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1. I n t r o d u c t i o n  

Iterability remains the only obstacle on the way to a general construction of 

inner models below superstrong cardinals, and so the only obstacle to the many 

equiconsistency results which will follow from such a construction. A more precise 

description of what "iterability" means is given by (t) of 2.21, but we shall not 

go into this now. I t  is perhaps worthwhile pointing out one of the many potential 

applications of the construction of inner models: 

THEOREM 1.1 (Schimmerling-Steel): Suppose PFA, the proper forcing axiom, 

holds and there exists a measurable cardinal ~. Assume (t)v,k for all u < ~, 

k < w. Then there exists an inner model with a superstrong cardinal. 

Theorem 1.1 is really the result of the combined work of several people over 

many years. It  is perhaps deficient in several respects; the measurable cardinal 

should not be necessary, and the consistency strength of PFA is anyway supposed 

to be much more than a superstrong cardinal. But most annoying is our inability 

to prove (t). There have been several a t tempts  to approximate a proof of (~). All 

have the form "failure of (t) gives a transitive model for ZFC plus large cardinal 

axiom (A)," where the particular large cardinal which (A) stands for has changed 

over the years, becoming stronger. Thus if we wish to eliminate the assumption 

of (~) in Theorem 1.1 we may deduce only the weaker of (A) and "there exists 

an inner model with a superstrong cardinal." 

This paper  presents the latest in the series of strengthenings of (A). In Corollary 

3.3 we show that  a failure of (~) implies the existence of a non-domestic premouse. 

The notion of domestic is stated precisely in Definition 3.1. A non-domestic 

premouse gives a model .Ad with a cardinal ~ so that  

* n is a limit of Woodin cardinals in Ad; 

* ~ is a limit of cardinals strong to ~ in A4; and 

• n is externally measurable. 

(We refer the reader to [Kan97, §26] for the definition of strong and Woodin 

cardinals. A cardinal T is said to be s t r o n g  to  n just in case that  T is ")' strong 

for all ~ < n.) This of course is substantially weaker than a superstrong cardinal. 

Thus combining Corollary 3.3 with Theorem 1.1 we get 

COROLLARY 1.2: Suppose that PFA holds and that there exists a measurable 

cardinal. Then there exists a non-domestic premouse. 

Some (conceptually) simple modifications of our proof allow substituting for 

(A) an axiom slightly stronger than non-domestic (specifically the existence of 

premice A4 with any finite number of cardinals n0 < .-" < nn such that  each ni 
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is: strong in A4; a limit of Woodin cardinals of 3d; and a limit of strong cardinals 

of Ad). Yet this too falls far short of an outright proof of (t). How to actually 

prove (t) remains one of the greatest mysteries of inner model theory. 

This paper divides into two Sections. Section 2 gives a brief account of the K c 

construction of [Ste96], adapted to our context. There are two main differences 

there. We follow Jensen's indexing of extenders, and we use a slightly different 

notation to deal with the fine-structural concepts of [Ste96] and [MitSt94]. Sec- 

tion 2 also states (~), and present a fundamental iterability theorem (2.28) which 

traces back to [Ste96] and [MarSt94]. Theorem 2.28 demonstrates the existence 

of maximal  branches through iteration trees, but not necessarily cofinal branches. 

(~) however requires cofinal branches. In Section 3 we show how to use Theo- 

rem 2.28 so as to obtain cofinal branches through the relevant iteration trees. 

This argument makes strong use of the smallness assumption that the premouse 

considered is domestic. More precisely, Lemma 3.24 demonstrates that iteration 

trees on domestic prentice have a certain property which we call semilinearity. 

This allows viewing the trees as compositions of "better" iteration trees - -  trees 

with unique realizable branches. Uniqueness then allows us to deduce that a 

maximal realizable branch must in fact be cofinal. 

ACKNOWLEDGEMENT: We thank Ernest Schimmerling and Martin Zeman for 

some fine structural help. 

2. Pre l iminar ie s  

Stretching our proof to work for the largest possible large cardinal seems to re- 

quire use of Jensen's indexing method. Jensen, unlike [MitSt94] and [Ste96], 

indexes an extender E at the successor of iE(t~) (computed in the ultrapower by 

E)  where ~ = crit(E).  Exact details of this method of indexing can be found in 

[Jen97], which unfortunately is unpublished. Our own approach here is a combi- 

nation of the indexing of [Jen97] with the fine structure of [MitSt94]. We include 

in this Section a description of the basic definitions involved in this combina- 

tion, continue with a particular kind of realizability for finite phalanges which we 

shall need, and end with the fundamental iterability theorem for such realizable 

phalanges. Throughout the Section we indicate how our notions correspond to 

those which exist in the literature, both in [Jen97] and in [MitSt94]. This Section 

does not contain any proofs, since all results involve only simple modifications to 

proofs which exist in the literature. We shall refer the reader to the location of 

these proofs, and occasionally remark on the modifications which must be made. 
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Definition 2.1: Let f l  be a transitive structure with a largest cardinal a. F is 

said to be a who le  1 e x t e n d e r  on ]Q just in case that there exist Af, lr such that: 

1. Af is transitive; 

2. It: JQ -4 Af is E0 elementary and cofinal; 

3. crit(~r) = ~; and 

4. F is the restriction of lr to P ( ~ ) ~ .  

Given A~[ and a whole extender F on )Q one can recover a minimal pair 

Af, Ir which satisfies conditions 1-4 of Definition 2.1. Indeed, given any A4 such 

that P(a) ]~  = P(~)]~ one can form a structure Ulto(A/[, F )  and an embedding 

a: A4 -9 Ulto(A4,F) such that: 

1. The restriction of a to P ( g ) ~  is equal to F; 

2. a is ~'0 elementary and cofinal; and 

3. Ulto(A/l, F) ,  a is minimal, in the sense that  every element of Ulto(fl4, F )  

has the form a(f)(~) for some function f E M ,  f :  ~<"~ -+ Ad, and some 

E F(a )<% 

(Ult0 (A/I, F )  need not in general be wellfounded. If it is we assume it's transitive.) 

U l t o ( ~ i , F )  and a are known as the coa r se  u l t r a p o w e r  of 2vl by F and the 

u l t r a p o w e r  e m b e d d i n g  respectively. The precise method of the construction 

of Ult0(A4, F)  can be found in [Zan97, §26]. 

lh(F),  the l e n g t h  of F,  is ~r(a). For A _< lh(g)  we let F]A be given by 

( F I A ) ( X )  -- F(X)  n A. 

CF denotes the set of A < lh(F) such that  F[A is itself a whole extender. There is 

an implicit dependence on AT~ here, but in fact using the ultrapower construction 

one can see that  CF depends only on F.  

Remark 2.2: lh(F) always belongs to CF, and is quite often the only element 

of CF. However we should point out that already at the level of sharps one 

can construct extenders F such that CF contains additional elements other than 

lh(F). These examples, at least below a superstrong cardinal, will fail to satisfy 

the initial segment condition 2.4(5), see Footnote 7. 

Definition 2.3: .IV" = ( Ja[A], F) is c o h e r e n t  iff 

1 General, non-whole, extenders are structures of the form F]A presented below. 
A precise definition can be found in [Jen97, §1]. It is customary also to define 
extenders as the directed system of measures derived from FlA. See for example 
[Kan97, §26]. 
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1. J~[A] is acceptable;  2 

2. For some 5 < a ,  F is a whole extender  with domain  p(n)J~[A] where 

= c r i t (F) ,  and n is the largest cardinal  in Ja[A]; and 

3. J~[A] = Vlt0(J~[A], F ) .  3 

Definitions 2.1 and 2.3 are taken essentially from [Jen97]. Our  next  definition, 

tha t  of  a premouse,  is similar  to tha t  of [Jen97] except  tha t  we view the height 

of  a p remouse  not  as an ordinal  c~, but  as a pair  (~, k) where c~ is an ordinal  and 

k < w. The  main  difference between our premice and those of [Jen97] comes in 

th rough  condit ion 4 and we shall e laborate  on this below. 

Definition 2.4: Ad -- ((J~[/~], E , / ~ , E ~ ) , k )  is a p r e m o u s e  if it satisfies the 

following conditions: 

1. a E ON and k _< w; 

2. Ja[/~] is acceptable;  

3. (Coherence) /~ has the form {(u, Z)  ] u < a A Z E E~}. For each u _< a ,  

E~ is either e m p t y  or else it is a whole extender  4 so t ha t  

(a) ( J , [ / ~ r u ] , S ~ ) i s  coherent and 

(b) d o m ( E , )  includes all subsets of c r i t (E , )  in J~[/~F u] (in other  words 

the ordinal  ~ of Definition 2.3 is the successor of n in Ju[/~ r u]); 

4. For (/3, l) <Lex ( a , k )  (strictly),  .~¢[ll(fl, l) = ((J~[ff, Ff i] ,C,E,r~,E~), l ) is  a 

premouse,  is sound, and has a solid standard parameter (both  concepts  are 

explained below); 

5. (Initial segment  condition) In the case tha t  k = 0, if E~ ~ 0, )~ E CE~, and 

A < lh(E~)  (strictly) then E~]A E AJ. 

The  elements of A/ / a re  the elements of  J~[/~], bu t  ~4 contains addi t ional  infor- 

ma t ion  which includes k and the predicates  C , /~  and E~. We shall use J~,k[/~] to 

denote  the s t ruc ture  ((Ja[/~], e , /~) ,  k) and write (J~,k[ /~] ,Ea)  for the premouse  

~4. When  we wish to draw a t ten t ion  to k we shall refer to A/[ as a k-premouse.  

We shall refer to c~ as a ( ~ 4 )  and to k as k(A/[). 

2 A structure is a c c e p t a b l e  if it satisfies a strong form of the GCH, to the effect that  
every subset of an ordinal -y in the structure is constructed before the successor 
of ~/in the structure. 

3 Equivalently in this situation, taking eQ = Ja [A] and Af -- J~[A] would satisfy 
the conditions of Definition 2.1. 

4 We alternate between thinking of whole extenders as functions and as predicates. 
The predicate E~ is simply the graph of the function E~. Thus Z E E~ iff 
Z = (X ,Y)  for some X , Y  such that E~(X) = Y. 
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Remark 2.5: [MitSt94] includes an additional condition in the definition of a 

premouse, saying that if E~ ¢ 0 then E ~  = 0 where Af -- Ult0(J~4, E~) a n d / ~ f  

is the image of E under the ultrapower embedding. In the context of Jensen's 

indexing this extra condition follows provably from the others. 

Exclusion 2.6: To avoid technical complications related to the preservation of 

the initial segment condition, 2.4(5), WE LIMIT OUR DISCUSSION THROUGHOUT 

THE PAPER TO STRUCTURES M SUCH THAT J~ ~ "  THERE DO NOT EXIST 

SUPERSTRONG CARDINALS." We shall say more on the preservation of 2.4(5) in 

Remark 2.15 below. For the time being let us note that under our exclusion, 

2.4(5) is equivalent to: "In the case that k = 0, if E~ ¢ 0 then CEo does not 

contain elements other than lh(E~)." 

[Jen97] defines the notion of F~* elementarity which is then used throughout 

the notes, instead of the elementarity notions of [MitSt94]. In this paper we shall 

adopt an approach to elementarity which is close to that of [MitSt94] and [Ste96], 

although the end result, at least for the premice we shall work with here, is the 

same as Jensen's ~*. Roughly speaking, we shall follow [MitSt94] except that 

the index "k" which denotes the degree of elementarity is transferred, from the 

embedding to the premouse on which it operates. This movement was suggested 

to the authors by Sy Friedman. It does not affect the mathematical content of 

our statements; however the notation is simplified substantially. We have already 

taken the first step of this movement in our definition of a premouse. Next we 

explain how this movement affects the fine structure of our premice, and the 

notion of elementarity which it generates. 

Our definitions below, and indeed Definition 2.4, are carried inductively on the 

lexicographic order for pairs (c~, k>. For each premouse we define below its t r u e  

he igh t ,  ~(2t4); its t r u e  doma in ,  ~(~4) ;  its p r o j e c t u m ,  p(]vl); its s t a n d a r d  

p a r a m e t e r ,  p(A4); its r e d u c t ,  9~(fl4); and its core ,  ~(A4). We then say what 

it means for 2t4 to be sound ,  and (neglect to) say what so l id i ty  is. Once these 

concepts are defined for premice of height (c~, k) we can make sense of a premouse 

of height ((~, k ÷ 1) - -  particularly of condition 4 of Definition 2.4. 

During the induction we shall make use of the following two assumptions: 

( U) ~  The standard parameter, p(A4), of J~4 is universal. 

(S)¢(~) The standard parameter, p(~(Ad)), of ~(Ad) is solid. 

Although we indicate below how we use (U)~  and (S)¢(~) (both are used to 

prove the preservation of the standard parameter under embeddings), it is not 

within the scope of this paper to define solidity and universality. We refer the 
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reader to [MitSt94, Definition 2.7.4] and [MitSt94, Definition 2.7.5], as well as 

[MitSt94, §8]. Solidity and universality for k-premice correspond to "k + 1 solid- 

ity" and "k + 1 universality" in the terminology of [MitSt94]. 
Before we begin the induction, let us briefly review the fundamental definitions 

of fine structure, which trace back to [Jen72]. Additional details can be found 

in [Jen72] or the forthcoming [Zem]. Suppose S = (S, {Ai}ieI) is an acceptable 

structure with predicates {A~}iei. The E1 p r o j e c t u m  of S, denoted Pl(S), is 

the least ordinal p such that for some q E S A ON <~ and some E1 formula ~, 

{~ < P I S ~ ~[~,q]} • S. pl(S) may be ONNS or it may be smaller. The E1 

s t a n d a r d  p a r a m e t e r  of S, denoted pl(S) ,  is the least q (wrt the lexicographic 

order on decreasing sequences of ordinals) which witnesses the above. The E1 

r e d u c t  of 8 is the structure Tt = (R, {B~}ieI, B*) where: R = S N H(p l (S ) ) s ;  

Bi = As A R; and B* is an additional predicate which codes the E1 theory of 

P1(8) LJ {P1($)} in S. (More precisely, <i,d> C B* just in case that i < w, 
C pl(S) <w, and S ~ ~[~,pl (S)] .  {7~¢}~<w here is a recursive emlmeration of 

all E1 formulae of $.) Finally, the E1 core of S is the transitive collapse of the 

E~ Skolem hull in $ of p~(S) U {pl(S)}. Of course making this precise requires a 

definition of E1 Skolem terms in S, but we shall not go into this. S is E1 s o u n d  

just in case that the E1 Skolem hull of p~($) U {p~(S)} in S includes all of S. 

Let us now return to the induction. We start with the case that AJ is a 0- 

premouse. In this case ~(Ad) is w. c~ = ON~J~¢I; ~(3d)  = AJ; p(jbl) is the Et 

projectum of Ad: p(Ad) is the E1 standard parameter of Ad; ~l(3//) is the E1 

reduct of A//; and ~(Ad) is its E1 core. We say that Ad is sound just in case 

that Ad is E1 sound (and in particular ~(Ad) = 2t4). Observe that ~R(~4) codes 

the Skolem hull which collapses to ¢(Ad). It follows that ~(3d) can be recovered 

from ~(34) .  

Remark 2.7: One can check that p(~(Ad)) = p(Ad) and that  the two premice 

agree up to p(Ad). The universality assumption (U)z4 implies that in fact ~(34) 

and 3,t have the same subsets of p(3A). From this it follows that  p(~(JM)) is the 
collapsed image ofp(3d), and so ff(Ad) is sound, ff(Ad) is then the unique sound 

premouse whose reduct equals gl(3d). 

• (34) is still a 0-premouse but since it is sound and - -by  (S)¢(z4)-- has a solid 

standard parameter, it can be extended to a 1-premouse. We call this a trivial 

extension: Given a sound k-premouse 3,t = (J~,k[/~], Ea) with a solid standard 

parameter, the t r iv ia l  ex t ens ion  of 3d is the k + 1-premouse (,Ta,k+l[/~], E~). 

The requirements of soundness and solidity are needed to establish 2.4(4) for the 

trivial extension. 
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Let us next consider the case when .hA = (J~,k+l[/~], E~) is a k 4- 1-premouse. 
Our notions now will correspond to the appropriate "k + 2 notions" in the ter- 

minology of [MitSt94]. Let j~trn denote the k-premouse (J~,k[E], Ea), which we 

call the i m m e d i a t e  t r u n c a t i o n  of J~4. We define ~(A/[) to be p(~/Wn); and 

~(Ad) -- 9~(A/ttrn). ~(A/[) is then a structure whose ordinal height is O(A/[), and 

A4 is the unique premouse whose true domain equals ~(.h/[). 

p(J~4) is defined to be the E1 projectum of ~(J~) ;  p(~4) is the E1 standard 

parameter of ~(J~/[); 9~(A4) is the E1 reduct of ~ ( M ) .  L e t / )  be the E1 core 

of ~(A4). There is a unique k + 1-premouse whose true domain equals 7). Let 

~(,~4) be this premouse. 

Remark 2.8: Much is hiding in our claim that there is a k + 1-premouse whose 

true domain equals /). To verify this we must capture the properties which 

make M into a k + 1-premouse as E1 statements over ~(J~[), and reflect these 

statements to 7). Some of the properties are easy to capture, others are more 

difficult. Among the more difficult ones is the solidity of p(A/Wn). Capturing 

this property seemingly requires a E2 statement over ~(A/[). [MitSt94] avoids the 

problem by putting witnesses for this E2 statement as additional parameters in 
the Skolem hull which defines 7), see [MitSt94, pp. 23-24]. In fact the solidity of 

p(j~/[trn) is equivalent to a E1 statement over ~(~4) ,  and so additional parameters 

are not needed. We refer the reader to the discussion of generalized witnesses in 

[Jen97, §7 pp. 1-5]. (The existence of generalized witnesses is E1 over ~(J~A).) 

We say that  M is sound just in case that ~(]~4) is E1 sound (in particular 

7) = ~(Ad) and ~(M) = M/t). Observe that  Yt(J~) codes the Skolem hull which 

collapses to 7). Thus knowledge of Yt(Ad) suffices to determine E(A/[). Remark 2.7 

applies and assuming (U)~  it follows that ~(A/I) is the unique sound premouse 

whose reduct equals 9~(,~¢t). 
Finally, in the case of an w-premouse J~t = (Ja,~[E], E~): By condition 4 of 

Definition 2.4 we know that each of (J~,k[/~], E~} is a sound premouse. Let us 

refer to them as A40, Adl , . . . .  Our definitions for these premice are such that 

~(A/[0) _> p(A/[0) = ~(Adl) > p(A/[1) = ~(A/[2) _> .-.. Since there are no infinite 

(strictly) descending chains of ordinals we see that for all sufficiently large k < w, 

~(~4k) = p(A/tk) = #(Mk+l) .  We let p(A/[) = 0(A/I) be this eventual value. A4 

by default is sound, and E(M) = 2¢i = E(Mk). Again for all sufficiently large 

k < w, the reducts 9~(J~4k) all have the same elements (though not the same 

predicates; fft(2~/Ik+~) has one additional predicate on top of the predicates of 

9~(~4k)). We let ~(Ad) = 9~(.£4) have as its elements the elements of 9t(~4k) 

for some (all) sufficiently large k < w, and as its (infinitely many) predicates 
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the accumulation of the predicates of 9~(A4k), k < w sufficiently large. We set 

p(A4) = 0. p(A4) by default is solid and universal. 

Remark 2.9: Each element of A4 is coded as a term over ~(A4).  We shall not 

make this precise; readers who have some familiarity with fine structure of any 

fashion may interpret this in their favorite way. Terms can always be viewed as 

finite sequences of ordinals. For t C ~(A4) we use rt7 to denote the element of 

)A coded by t, if t has the form of a term. t ~-~ rt~ is then a partial map from 

v~(A4) <~ onto A4. 

Let f14 --- (Ja,k[/~], Ea> and Af = (J~,l[/~], F~> be two premice. An embedding 

r :  M --+ H is said to be e l e m e n t a r y  just in case that conditions 1-4 below are 

satisfied. 

1. k - - l ;  

2. crit(Tr) < ~(A4); 5 

Let ~ be the restriction of 7r to ~(A4).  

3. ~ is a E1 elementary embedding of ~(A4) into ~(Af). (Note that formulae 

here may make reference to the additional predicates of ~(A4));  

4. For t E ~9(M) <~ a term, 

 (rtT) = 

where the RHS is of course interpreted in X .  

In the situation described by condition 4 above we say that 7r is i n d u c e d  by ~. 

We say that 7r is p rec i se  if in addition to 1-4 the following condition is satisfied: 

5. crit(lr) > p(A4), p(Af) = p(A4), and p(JV') = 7r(p(A4)). 

The importance of precise embeddings has to do with Remarks 2.11, 2.18, and 

particularly Lemma 2.25(b). The reader who survives to the end of Section 3 will 

observe that Lemma 2.25(b) is essential to the proof of Claim 3.32. This use of 

Lemma 2.25 is typical of its general use in inner model theory. 

Remark 2.10: Almost by definition ¢(A~I) embeds elementarily into A4. The 

embedding is induced by the map # which embeds the E1 core of ~(A4) into 

D ( M ) .  We call this elementary embedding the a n t i - c o r e  embedding. Its critical 

point of course is at least p (M) .  Assuming (U)]~ the anti-core embedding is in 

fact precise. 

5 If lr ---- id we view this condition as vacuous. Similarly in condition 5 below. 
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Remark  2.11: If  r :  M --+ Af is precise and 3,t is sound, then ¢(Af) = M and ~r 

is in fact the anti-core embedding. 

FACT 2.12: The composition of two elementary embeddings is elementary. 

Indeed, any transfinite composition of elementary embeddings is elementary. 

7 ) -- (J~#[/~], H~) is said to be an in i t ia l  s e g m e n t  of A4 just in case that  

(%i /  _<Lex ( a , k ) , / t  --- Er'Y, and Hv -- E~. P is a s t r i c t  in i t ia l  s e g m e n t  of A4 

if strict inequality holds (even if 7 = a) .  

FACT 2.13: Let r :  A,/--+ Af be elementary. Let 2f4 be an initial segment of A4 

and let J~f = 1r(J(4) (where this is understood to be AT if  J(4 = A4, and an n-th 

immediate truncation of At" if 2~4 is an n-th immediate truncation of  A4). Then 

~rr A4: A4 --+/f is elementary. 

We say that  r :  A4 --+ Af is a w e a k  embedding if it satisfies the conditions of 

elementarity with 3 replaced by the following weaker condition: 

w3. ~: ~(A/I) --+ ~(Af) is E0 elementary and cardinal preserving. 6 

Any elementary embedding is also weak. Facts 2.12 and 2.13 continue to hold 

with elementary replaced by weak. Another quality of weak embeddings, crucial 

to the proof of Theorem 2.28, is given in Remark 2.14 below. As a rough guide to 

the future distinction between elementary and weak embeddings, let us say that  

embeddings given by iteration trees are elementary, while realization embeddings 

(see 2.27) are weak. The need for this distinction is explained in Remark 2.31. 

Remark 2.14: Suppose ~r: A4 -+ Af is weak. Fix ~ < A E A,f. Suppose that  there 

exists a strict initial segment P of Af such that  a('P) >_ r(A) and p('P) <_ ~r(~). 

Let Af-  be the least such. Then there exists a strict initial segment Q of A4 such 

that  a (Q)  _> A and p(Q) <_ ~. Let A4-  be the least such. Then ~r(A4-) -- A/'-. 

(As always ~r(A4-) is understood to be an n-th immediate truncation of Af if 

A,/- is an n-th immediate truncation of A4.) 

An extender F with critical point ~ is said to be an extender ove r  a premouse 

3 J  = (Ja,k[/~], E~) just in case that:  

F1. The domain of F equals p(a)a4;  

F2. g < #(34); and 

F3. If k = 0 and E~ ¢ 0 then g < lh(Ea) (strictly). 

6 [MitSt94, 5.1.7 ft.] makes the additional requirement that ~ be P~ elementary on 
a cofinal subset of :D(J~4). This gives a class of embeddings which is not closed 
under compositions, creating problems later on, particularly in 3.33-3.35. 
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The (fine) u l t r a p o w e r  of ~4 by F is then defined essentially using terms. One 

way to state this is the following: Let 7) = U l t 0 ( ~ ( M ) , F )  be the coarse ul- 

trapower of ~(2~4) by F,  and let # be the coarse ultrapower embedding. De- 

fine Af = Ult(A4, F)  to be the term structure recovered from 7) and define the 

(fine) u l t r a p o w e r  e m b e d d i n g  r :  A,I --4 Af to be the embedding induced by ~. 

Ul t (M,  F)  needn't  always be wellfounded. If  Ul t (M,  F)  is wellfounded then we 

assume it 's transitive. It  is easy in this case to check that  ~(Ult(J~4, F))  = 7) 

and that  ~ is elementary. 

Conditions F1-F3 are all necessary for this to make sense. F1 and F2 allow 

forming the coarse ultrapower of ~ (2~4). F3 is used to make sure that  Af continues 

to satisfy the initial segment condition. 7 If condition F2 fails then F c a n n o t  be 

applied to A/l, even if crit (F) < 2~4NON and the domain of F includes precisely all 

subsets in ~4 of its critical point. However it is possible in this case to (trivially) 

t runcate .h/[ to some k'-premouse A/[' = (J~,k, [/~], E~) with a true height large 

enough so that  F2 holds for ~4 ~. This process of trivial truncation corresponds 

to the drops in degree of [MitSt94]. If condition F3 fails then again we don' t  

apply F to M .  Generally speaking when this happens we end up applying F to 

a different premouse altogether, usually the next premouse on the iteration tree 

in question. 

Remark  2.15: Using the equivalence of Exclusion 2.6 one can verify that  (assum- 

ing Exclusion 2.6) the initial segment condition is preserved under Skolem hulls 

and under ultrapowers by extenders which satisfy F1-F3. Without Exclusion 2.6 

preserving 2.4(5), particularly under Skolem hulls, becomes more complicated 

(see [Jen98b] for details). Let us point out already here that  the initial segment 

condition, 2.4(5), is essential later on. Without it Fact 3.28 below may fail. Fact 

3.28 in turn is crucial to one of the key arguments of inner model theory, the 

demonstrat ion that  comparisons terminate. 

For a structure 8, we use ~1 (8 )  to denote the collection of subsets of S which 

are E1 definable over $ with parameters.  More precisely, X E E1(8) just in case 

that  there exist ~ C 8 <~ and a E1 formula ~ so that  x E X ~ $ ~ ~[x, ~]. 

Det in i t ion  2.16: Suppose F is an extender over a premouse Ad. Let n = cri t(F) 

and let Af = Ult(~4, F) .  F is r e l a t e d  to A/[ just in case that  

7 In this respect F3 is a necessary assumption: If crit(F) = lh(E~) one may still 
attempt to form the ultrapower Af -- Ult(A4, F) and ultrapower embedding ~r. 
Letting E* = ~r(E~) be the final extender predicate of Af, one can see easily that 
lh(E~) E CE*. In particular C~. contains additional elements other than lh(E*), 
and may fail to satisfy the initial segment condition. 
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1. P(a)  NAf C P(a)  N M;  and 

2. P(a)  N ZI(~(Af)) C P(a)  ~ ~-]~1(~(.]~)). 

Note that  the converse inclusions to I and 2 hold automatically. Thus F is related 

to M iff equality holds in both. We shall use these equalities later in conjunction 

with Remark 2.18 below. 

FACT 2.17: Suppose M and 7 ) = (J~,~[F],F~> are premice, fix ~ << /3, and 

suppose F n ¢ 0. Let ,~ = crit(Fn) and let ~" be the successor of a in 7)I[ (~/, 0>. 
Assume that (a) F~ is an extender over A4; (b) 34 and 7) [[ (~/, 0> agree up to T; 

and (c) P ( T ) A  ~'1(7) ][ (,/,0)) C ~1(~(34)) .  s Then F n is related to 34. 

Fact 2.17 is our main tool for establishing that some extenders are related to 

34. Its proof is a direct computation using our definitions of Ult and Ult0. See 

[Jen97, §1 Lemma 8] or the final part in the proof of [MitSt94, Lemma 4.5]. 

Remark 2.18: Suppose r:  34 --+ Af is elementary. Let ,~ = crit(~r). Suppose 

(a) P(t¢) N 34 = P(a)  NA/'; (b) P(a)  N ~-].1(~(34)) = P(n) N ~I(~(Af));  and (c) 

> p(M) .  Then (S)~  ~ [(S)]¢ and Ir is precise]. 

Remark 2.18 is a restatement to our context of [Jen97, §7 Lemma 2.1]. Conditions 

a ~  by themselves suffice to establish that  p(Af) = p(34). Solidity is used to make 

the additional claim that p(Af) = ~r(p(34)). We will only use Remark 2.18 in the 

special case where r is a composition of ultrapower embeddings. For the proof 

in this special case see [MitSt94, Lemmas 4.6, 4.7]. 

This ends our introduction to fine structure. Readers familiar with Jensen's 

~* theory should take comfort in the fact that our elementary embeddings are 
in practice almost always ~* elementary, and our precise embeddings are ~* ele- 

mentary. Really the difference between our approach here and that  of [Jen97] is 

in the level of generality. Our premice satisfy strong demands of soundness. The 

fine structure of [Jen97] applies in much more general settings to structures which 

do not satisfy these soundness demands and therefore are not, by our definition, 

premice. Readers familiar with [MitSt94] and [Ste96] should note that  our ap- 

proach here differs only linguistically. For example, a normal, non-overlapping, 

maximal iteration tree on a k-premouse M = (,Ta,k[/~], Ea) is simply a normal, 

non-overlapping, k-maximal iteration tree on (Ja[/~], Ea) in the terminology of 

[MitSt94]. 

8 This is similar to but slightly weaker than the definitions of close extenders in 
[MitSt94, Definition 4.4.1] and ~1 amenable extenders in [Jen97, §1 p. 12]. 
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[Ste96] and [Jen97, §11] both include a description of the construction of a 

model known as K c. The two accounts differ in the way they index extenders 

and in their concepts of elementary embeddings. We include below a rough 

description of this construction, adapted to our own context: Our indexing of 

extenders follows [Jen97], while our concept of elementarity is closer to that of 

[Ste96]. 

Fix throughout a cardinal ~. We shall later assume that ~ is measurable, 

but for the time being this is not necessary. We define a sequence of premice, 
(Mv,k ] ~ < ~t, k < w/. These prentice will "converge" to a model K c = .Ma,o.  

For each v and k, A/lv,k will be a k-premouse, of height some a(v, k) ,  and with 

predicates E~"k,E~"k.  We abbreviate this by saying that  Ad~,k has the form 
~ v , k  v k (fl.(~,k),k[E ] ,E ' >. 

For limit v, define A/I<. to be the l i m i n f  of the premice A/[~,~ for ~ < v. 

AA<v then has the form (J~(<.),0[/~<~], 0) where /~<~ contains extenders E <" 

for 7 < a(<v) .  Each proper initial segment of M<~ is an initial segment of 

A4a,• for all sufficiently large ~ < v; and A~I<. is the longest premouse with this 

property. The fact that this is well defined is explained further in Remark 2.19. 

Most important is the definition of A4.,o when v is a limit ordinal. This is 
divided into two cases. 

CASE la: If there exists a unique extender F so that  (J~(<~),0[E<~], F)  is a 

premouse and is furthermore certifiable (see Definition 2.20), then set 2~4~,0 = 

(ff~(<~),0[E ], F)  for this F.  

CASE lb: If there are extenders F1 ¢ F2 so that both (Ja(<~),0[/~<~], F1) and 

(Ja(<v),o[/~<'], F2) are certifiable, then pick your favorite such F1, F2 and set 

My,0 -- (ffa(<~),o[/~<'], F1, F2). If this happens the construction ends at v, 0, 
and M, ,o  is a pre-bicephalus  rather than a premouse (see [MitSt94, Definition 

9.1.1] or [Jen97, §6]). 9 Given enough iterability it can be shown (Remark 3.4) 
that Case lb in fact n e v e r  occurs. 

CASE 2: Otherwise, set ~4~,o -- (Ja(<.),o[/~<v],0). 

Having defined J~cI.,k we let J ~ , k + l  be the trivial extension of E(~cI~,k). Ob- 

serve that then 0(A4.,k) > p(A/l~,k) ---- ~(.hd~,k+l). It follows that  for all suffi- 

ciently large k < w we have ~(2~4~,k) = p(AA. ,k )  and hence trivially ~(M.,k)  = 

~Adv,k. Thus c~(~, k), /~,k, and E ",k are cons tan t  for all sufficiently large k. We 

9 Bicephali are slightly simpler in the context of Jensen's indexing, since there is 
no need to distinguish types. 
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",Z, r~,,k1 E.,k\ let ,~¢I~,~ = ~ ~(~,k),~t ], ] for some (any) k < w large enough to stabilize 

these objects. 

Remark  2.19: Using Remark 2.7, A/I~,k+l and ~4~,k agree up to the successor 

of p(J~4.,k) in ~4~,k. Inductively one can now verify (in the case of limit u) that 

if a _< p(AJo,~) for all sufficiently large ~ < u, then the premice ,~4o,~[[(a+,0) 

(where a+ is computed inside .h/[~,~) are increasing (in the initial segment order) 

as ~ -+ v, for ~ large enough. Their common values up to their ~+-s are then put 

as initial segments of A~t<,, and all initial segments of J~4<, are of this form. 

In the successor case we simply add one more level of constructibility. Thus 
~u+l 0 ~v+l,0 E""~ ~E ~'~. The construction J~v+l,0 : (fla(.,w)+l,o[E , ],~) where = 

starts with the premouse A41,0 = (fll,O[~], ~). 

Definition 2.20: Let .hi = (fl~,o[E], F) be a premouse such that F ~ 0. Let 

= crit(F).  (N, G) is a ce r t i f i c a t e  for ~4 iff 

1. N is a transitive ZFC- model and V~ C N; 

2. G is an extender on N with critical point t~. Note that G need not measure 

all subsets of ~ in V, but only the ones in N; 

3. Let N -- Ult(N, G). Then Vx+~ c fii, where A = F(~); 

4. F ( X )  = G ( X )  A A for X • P(~)  N N A .h/l. 

J~ is ce r t i f i ab le  iff (in V) for every A C a there exists a certificate (N, G) such 

that A • N. 

Definition 2.20 is taken from [Jen97, §11]. Note that condition 4 above is 

stronger than the parallel condition, Definition 1.1(b), of [Ste96]. [Ste96] only 

requires F ( X )  N v = G ( X )  N v where v is the supremum of generators of F.  This 

strengthening is essential to handling premice indexed according to Jensen. 

During the construction we have made constant use of the assumptions (U) 

and (S). To be more precise, following stage (v, k) we appeal to (U)~v, ~ to secure 

the soundness of ~(,&4.,k) (see Remark 2.7), and then appeal to (S)¢(~..k) to 

secure solidity, so that we may take the trivial extension of ~(2t4v,k). We again 

use (U)~v, k in Remark 2.19. For k = 0 we assumed further that Case lb  didn't 

occur (~lb). ,k,  so that we don't  have to end the construction at a stage before ~. 

Officially the construction of K c is an induction during which we prove (U)~.,k,  

(S)¢(~.k)  , and (~lb)~,k once A/I~,k has been constructed. A substantial step in 

this direction is given by the following Theorem of Mitchell-Steel: 

THEOREM 2.21: Assume J~4,,k has been constructed, and the following state- 
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ment holds: 

(t)~,k All countable elementary substructures 2~ of fl4v,k are Wl + 1 
iterable (for normal, maximal, non-overlapping iteration trees, 
see below). Moreover, for any given enumeration ~ of JQ there 
exists an iteration strategy which has the weak Dodd-Jensen 
property relative to ~. 

Then (U)z4,,k, (S)¢(~.k) ,  and (~lb)v,k are true. 

The reader may consult [NS99] for an explanation of the weak Dodd-Jensen 

property and some remarks on the proof of Theorem 2.21, which traces back 

to [MitSt94, §8]. Let us remind the reader that an iteration tree is said to be 

n o r m a l  if the indices of extenders it uses are increasing. It is non-overlapping 
if extenders are always applied to the earliest possible model. An iteration tree is 

m a x i m a l  if extenders are always applied to the largest possible initial segment. 

More precisely, if ~ is the <7- predecessor of e+ 1 then ET is applied to some A/'*+I 

which is an initial segment of Aff .  In the case of a maximal tree one requires 

that Aft*+1 be the largest initial segment over which E f  is an extender. Thus 

Aft*+1 is either equal to Af~ or else p(Af*+t ) < c r i t (E / )  1° and there is a subset of 

c r i t (E / ) ,  definable over Aft*+1, which is not measured by E l .  

Theorem 2.21 reduces (U, S, ~lb)  to (t) but unfortunately no general proof 

of (t) is known. Much of the current research in inner model theory attempts 

to obtain increasingly more general proofs of (~) and our paper is another step 

along this line. We shall prove ultimately that (t),,k is true assuming that A/t,,k 

is domestic. As is usual with iterability proofs, our proof relies heavily on a 

fundamental iterability theorem which produces maximal branches through iter- 

ation trees. Several concepts are needed before we can formulate this theorem 

precisely. These concepts (resurrections, easy phalanges, sturdy iteration trees, 

and realizability) are defined below, and are followed by the fundamental iterabil- 

ity theorem (2.28). This theorem is essentially taken from [Ste96]. [Ste96] relies 

partly on the iterability proof of [MitSt94] which in turn draws on the results of 

[MarSt94]. 

Through the construction we define r e s u r r e c t i o n s  which trace initial segments 

of our current stage back to the stage where they appeared in the construction. 

The resurrection at stage (u, k) is a pair Rest,k, a~,k. Both are functions which 

are defined on all initial segments of A4,,k. For any such initial segment Af, 

10 So that E [  is no longer an extender over the trivial extension of Aft*+1, because 
of F2. 
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Res,,k[Af] is a stage/~?, l) <I.ex (v, k), and a~.k[Af] is an elementary embedding 

of Af into ~4,,1. 

The resurrection is defined inductively over the lexicographic order for pairs 

iv, k). Let us start with the case of iv, 0) for limit ~. If Af is a strict initial 

segment of A4~,0 we let Resv,o[Af] and a,,o[A/] be the eventual values of Resa,,~[Af] 
and aa,~[Af] as ~ --+ v. (That this makes sense follows from our definition of 

the resurrection in the successor cases, particularly case B.) If Af = A/[.,0 then 

Resv,o[Af] = (~, 0) and a~,0[Af] is the identity embedding. 

Next, let us define Rest,k+1 and a.,k+l assuming that these are defined for 

(~, k). We distinguish three cases: 

A. If Af = ~4~,k+1: we let Res,,k+l[A~ = (,, k + 1) and let a~,k+l[A~ be the 

identity embedding. 

B. If Af is an initial segment of ~/l,,k+l, cut below the successor of P(.]~u,k) 
in A~i~,k: By Remark 2.19, A/[.,k+1 and A~i~,k agree up to this successor, 

so that  Af is an initial segment of A/[~,k. We let Resv,k+l[.hf] = Resv,k[./~ f] 
and a~,k+l[Af] = a~,k[Af]. 

C. Otherwise: Since case A fails, Af is an initial segment of the immediate trun- 

cation of Jt4~,k+l, which by definition is E(A/I~,k). Let r :  E(Ad~,k) -+ Jt4~,k 

be the anti-core embedding. Let ]~f = r(Af). By Fact 2.13, ~ IAf: Af -+ .~f is 

elementary. JQ" is an initial segment of J~4~,k and so Res~,k[.l~f] and a~,k[J~f] 
are defined. Let Res~,k+l[Af] = Res~,k[J~ and let c%,k+,[Af] = a~,k[J~ o r. 
This last definition produces an elementary embedding by Fact 2.12. 

In the case of the stage (, ,w): If Af = ~4~,~ we let Res~,,~[Af] = (t,,w) and 

let a~,~ [A/~ be the identity embedding. Otherwise: Our construction ensures the 

existence of j large enough that Af is an initial segment of ~t~,j and p(.A4~,k) = 

~(2¢i~,k) for all k > j .  We let Res~,,~[Af] = Res~,j[Af] and a.,,~[Af] = a~,j[Af] for 

some/any such j .  (It doesn't mat ter  which of these j we pick; note that by choice 

of j ,  k > j ~ the anti-core embedding from .h/[~,k+l into A/t~,k is the identity.) 

Finally we must consider the stage iv + 1,0}. Again if Af = A/[~+l,0 we 

let Res~+Lo[Af ] = {v + 1, 0) and a,+~,0[Af] be the identity embedding. Oth- 

erwise, Af is an initial segment of J~4",~ and we let Res~+l,o[Af] = Res,,~ [Af] and 

In the interest of saving ink, we shall from now on use v (and occasionally ~]) 

to range not over ordinals but over pairs iv0, vl) of ordinals such that /21 _~ 03. 

Thus the stages in the construction of K c will be denoted as .hA~. By y < ~ we 

shall mean (7/o , ~/1) <Lex (//0,/]1). 
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Definition 2.22: An e a s y  p h a l a n x  (of length n + 1) is a finite sequence of 

premice (Af~ ] i <_ n) such that  the following conditions hold: 

1. For i < n, ~(Af~+l) is a strict initial segment of Afz; 

2. For i < j < n, p(Afi+l) < p(Afj+l); and 

3. For i < n, p(Af/+l) is solid. 

We shall use J(fi to denote ~(Af~+l), which by 1 is an initial segment of Afi. 

For notational convenience we shall often index the premice of an easy phalanx 

by transfinite ordinals rather than natural  numbers. Thus we shall talk of the 

easy phalanx consisting of Ale for ( E I ,  where I is some f inite set of ordinals. 

We continue to require that  the core of each premouse in the phalanx is an initial 

segment of its predecessor in the phalanx, etc. 

Given an easy phalanx, set Ai = P ( J ~ f / + I )  = P(-~f/). The Ai-s are then increasing, 

and since ~ embeds into A/~+I via an embedding whose critical point is at least Ai 

one sees that  Af~ and Af/+l agree up to Ai. Thus the pair of sequences <Hi [ i _< n), 

(A~ [ i < n) is a phalanx in the usual sense (see for example [Ste96, Definition 

6.5]). We shall refer to this phalanx as .ft. I teration trees on easy phalanges are 

formed as always, using the Ai-s as exchange ordinals: The first extender used, 

ETa, must have length greater than An-i;  and if E [  - -  the e-th extender used - -  

has critical point smaller than Ai then the < T  predecessor of e + 1 is allowed to 

be i. (Observe in this ease that  Af T and A;~ have the same subsets of c r i t (E / ) .  

Of course Afi may have more subsets of c r i t (E / ) ,  in which case E [  is applied to 

a strict initial segment of Aft.) We shall refer to the premice of AT" and to their 

indices as r o o t s  of T,  and will say for example that  m is the root of ~ if m _< n 

and the branch of 7" which leads to A f [  starts with m. We shall follow similar 

terminology when indexing the premiee of A~ by transfinite ordinals. Those <-s 

so that  N'¢ is a premouse of A~ are referred to as r o o t s  of T.  Other premice of 

7- are indexed starting from ~ + 1, where ~ is the largest root. We shall refer to 

the smallest root of T as the p r i m o r d i a l  r oo t ,  denoted pr T. 

Let 7" be an iteration tree on an easy phalanx A~ of length n + 1. Let b be a 

branch of T,  either leading to a premouse on 7- or else leading to a wellfounded 

direct limit which we refer to as the last premouse of b. Consider some e + 1 E b 

and let ( E b be the < T  predecessor of e + 1. Af t1  is an ultrapower either of 

Arc T, or else of Af*+~ which is a strict initial segment of Af t .  If  the latter is true 

we say that  ( is a t r u n c a t i o n  point of b. H For notational convenience we shall 

11 The corresponding terminology in [MitSt94] is drops.  Note that [MitSt94] would 
say the drop occurs at e + 1, rather than ~. [MitSt94] also distinguishes be- 
tween p rope r  drops,  where a(Af*+l ) < a(Af~), and drops  in degree,  where 
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denote Af*+l by A/c- when ~ is a truncation point of b and c + 1 is the successor 

of ~ in b. This is an abuse of notation, since ArC- depends on the branch b to 

determine ~. However b will generally be clear from the context. At any rate ArC- 

is then a strict initial segment of H~-. For uniformity we define H*+l and ArC- 

also if ~ is not a truncation point. In this case A/*+I and Arc- equal ArC T. Thus 

if ~ <7- ~ and there are no truncations on the segment (~, ~)7- then T defines an 

embedding i~,~: A/(  -+ Af~ T. We would like under certain circumstances to argue 

that this embedding is precise (Lemma 2.25). We shall do this by securing the 

conditions of Remark 2.18. 

De[inition 2.23: (7- an iteration tree on an easy phalanx I~.) ~/ < lh(T) is 

s imple  if (a) the root of 7 is primordial; and (b) there are no truncations on the 

branch [prT-, ~/)7-. Otherwise "y is non-s lmple .  

To motivate Definition 2.23, let us point out that our easy phalanges will always 

be induced by some branch through a past iteration tree. (Definition 2.26 makes 

this precise.) The models of J~, except for Afpr, will correspond to failures of 

2.23(b) on this past iteration tree. Thus in defining simplicity it is natural to 

demand both 2.23(a) and 2.23(5). 

De~nition 2.24: An iteration tree 7" on an easy phalanx A~ is s t u r d y  if: 

1. 7- is normal; 

2. 7- is maximal; 

3. For ~ + 1 < lh(7-) and -y the immediate <7- predecessor of c + 1, E T is 

related to Aft- = Af*+l; 

4. (~, 7 as above) if-y is non-simple then c r i t (E / )  _> p(Af~*+l ). 

Note that if 7 is a truncation point on the branch to e + 1 then crit(E~) > 

p(H~-) follows by the maximality of 7-. Thus 2.24(4) can only place an additional 

constraint when 3' is not a truncation point. The additional constraint in this 

case is simply crit(E~) > p(HT).  

Sturdiness is exactly what we need to prove Lemma 2.25 below. This Lemma 

is needed later; case (b) in particular is essential for Claim 3.32. We therefore 

restrict our attention throughout this paper to sturdy iteration trees. The trees 

we really care about (for the sake of Theorem 2.21) are normal, maximal, and 

non-overlapping. We shall verify later (Claim 3.8 and Lemma 3.9) that  such trees 

are sturdy. 

a(Af*+l) = a(A/'¢) and k(A;~*+l) < k(N¢). Our terminology does not make this 
distinction. 
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LEMMA 2.25: Suppose T is a sturdy iteration tree on A~. Let 4 <T ~ be such 

that there are no truncations on the segment (4, ~)W. Assume further that either 

(a) ( is non-simple; or (b) 4 is a truncation point on the branch leading to ~. 

Then the embedding i ~ :  AI'( --~ Af~ is precise, and p(Af[) is solid. In case 

(b) moreover = N (  a,,d is exactly w, ,al  to the  nti-core embedding. 

Proof (Sketch): Precision and solidity follows from Remark 2.18, by induction 

on 4- Conditions (a,b) of Remark 2.18 are given automatically by 2.24(3). To 

apply 2.18 one has to verify further that all extenders used on (~, ~]7- have critical 

points at least p(Af(),  and that p(Af¢--) is solid. If 4 is a non-primordial root then 

solidity is given by condition 3 of Definition 2.22. If 4 is a truncation point then 

solidity is given by 2.4(4) since Af( is a strict initial segment of a premouse. In 

all other cases solidity follows by induction. Also by induction one verifies that 

p(Af~) = p(Af¢-) for ~ in (4,~)T. This together with 2.24(2,4) allows verifying 

that  all extender used in (4, ~]T have critical point at least p(Af(),  as needed. In 

case (b) we know also that Aft- is sound, since it is a strict initial segment of a 

premouse. Applying Remark 2.11 then completes the proof of 2.25. | 

Lemma 2.25 is perhaps the most important application of the methods of fine 

structure to future results in this paper. It allows us under certain circumstances 

to pinpoint precisely an iteration tree embedding. 

Definition 2.26: (T  a sturdy iteration on an easy phalanx A~', b a branch through 

7- either leading to a premouse of 7- or to a wellfounded direct limit.) The easy  

p h a l a n x  i n d u c e d  by  t h e  b r a n c h  b consists of the premice N 0 , ' " , A f , ~ - l ,  

where m is the root of b; followed in increasing order by the premice Ale for 

m < 4 < lh(b) a truncation point of b; and ending with the last premouse of b. 

We denote this phalanx by A ~b. 

The reader may note that the premice of jffb are indexed by (possibly) trans- 

finite ordinals. A~ b is indeed an easy phalanx. The conditions of Definition 2.22 

can be verified using (among other things) Lemma 2.25. 

Definition 2.27". A rea l i z a t i on  of an easy phalanx A~ consists of a lexicograph- 

ically decreasing sequence of stages (vi [ i _< n) together with embeddings 

0ri [ i _< n} so that the following conditions hold: 

1. For i _< n, 7ri: Afi --+ NI,~ is a weak embedding; 

2. For i < n, Vi+l = Res~ [Tri(Jkfi)]; 12 and 

12 We remind the reader that Jkfi -- ¢(A/'i+x) is a strict initial segment of Af/. 
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3. For i < n, the following diagram commutes: 

.A/~ vi 

v 
o,~ [~, (X;,)] 

) J~/~i-l- 1 

7ri+l [ 

a . c .  ) ~ / + 1  

a.c. denotes the anti-core embedding and V illustrates the fact that  7ri(J~f/) 

is a strict initial segment of A/[~,. 

We shall refer to such a realization as g, ~. 

THEOREM 2.28: Let Jff be an easy phalanx, all of whose premice are countable, 

and let 7, "~ be a realization of J~l'. (We implicitly assume that ~4vo has been 

constructed.) Let T be a sturdy iteration tree of countable length on J~f. 

Then there exists a maximal branch b through 7" and a realization ~ ,  ~b of the 

easy phalanx ~ b  which satisfies the following: 

1. ~bl m = £I m and ~ r  m = J i m ,  where m is the root orb; and 

2. Let ( be the first truncation point of b, or if  there aren ' t  any let ( stand 

for b. (In either case Af~ is the first premouse of J~ b following Afm-l.13) 

Note that the iteration tree T defines an elementary embedding i T,¢. We 

require that v~ = Vm and that the following diagram commutes: 

M Vrn 

Let us remark that  strong forms of commutat ivi ty  hold also between any trun- 

cation points of b, not just between m and the first truncation point. This com- 

mutat ivi ty  follows from our requirements in Definition 2.27 and from Lemma 

2.25 (which relies on the assumption that  T is sturdy). A version of Theorem 

2.28 can be stated for trees which are not sturdy. In this case one has to make 

allowance for the fact that  the embeddings between truncation points of T are 

not always anti-core embeddings, and consider phalanges where the embeddings 

of Af/ into Af/+l are not necessarily anti-core embeddings. This has mainly the 

13 This may be .)V*m if m is a truncation point of b. 
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effect of complicating notation. Since anyway we only care about sturdy trees, 

we shall not go into this greater generality. 

Del~ni t ion  2.29: In the situation described by conditions 1,2 of Theorem 2.28 

we say that Y, ~ and 3 ,  ~b c o m m u t e .  We refer to P rm + 1 as the m e e t  of the 

two realizations. (This is a slight abuse of notation since m depends also on b.) 

A branch b for which there exist ~ and 775 which commute with g, # is called 

s u p e r - r e a l i z a b l e  (wrt ~, ~). 

Note that by 2.28(1,2), the meet ~ t m  + 1 is an initial segment of ~ :  ~i = v b for 

i < m and v,~ is equal to ~ where ~ is either the first truncation on b, or the 

final model of b if there are no truncations. 

Remark 2.30: Theorem 2.28 applies also to trees of length wl, except that then 

the branch b is found not in V but in V[G] where G is generic over V for col(w, wl). 

Theorem 2.28 is essentially a reformulation of [Ste96, Theorem 9.14], but with 

several differences. First, Theorem 2.28 is stated in the context of Jensen's in- 

dexing, and its proof requires use of condition 4 in Definition 2.20 rather than 

the parallel [Ste96, Definition 1.1(b)]. The reader interested in the modifications 

which must as a result be made to the proof of [Ste96, Theorem 9.14] may find 

those in [Jen98a, §3]. Secondly, [Ste96, Theorem 9.14] is stated for arbitrary 

phalanges, while Theorem 2.28 is more restrictive. With respect to this second 

difference our Theorem is easier. Thirdly, our weak embeddings are weaker than 

those of [Ste96]. The proof of [Ste96, Theorem 9.14] adapts with no serious mod- 

ifications. Let us only point out that the property of weak embeddings described 

in Remark 2.14 is essential to the proof. The reader familiar with copying con- 

structions may get a hint of the importance of Remark 2.14 by noting its use in 

copying. Finally, Theorem 2.28 places s t r o n g e r  demands on the branch b than 

do [Ste96, Theorem 9.14] and [Jen98a, §3]. The extra strength is in the case that  

there are truncations along b. Standard realizability demands would state only 

that the f i n a l  premouse of b embeds into the construction. Our demands in Theo- 

rem 2.28 state not only that the final premouse embeds into the construction, but 

that  every premouse on the branch which stands at a truncation point along b 

embeds into the construction. We further demand that these embeddings cohere 

in the way stated in Definition 2.27. With respect to this last difference the proof 

of [Ste96, Theorem 9.14] must of course be strengthened. In the proof of [Ste96, 

Theorem 9.14] Steel defines coarse ZFC- models 7~t~ for/~ < sup(T).  Inside each 

T~# he maintains a Q#, which is a stage of the K c construction relativized to 7~#, 

and an embedding r# of Aft- into Q#. To prove Theorem 2.28 one must instead 
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maintain in 7~  a realization (in the sense of Definition 2.27) of the entire easy 

phalanx induces by the branch of T leading to ~. Similarly the "tree of attempts" 

which Steel defines must be revised to search for a branch b and a realization of 

the entire easy phalanx induced by b, not just the last premouse. Checking that 

this modification can be carried through is a simple matter of commuting all the 

relevant diagrams. The careful reader will no doubt wish to do this herself. 14 

Remark 2.31: We should point out that  the proof of Theorem 2.28 does not 

produce elementary embeddings. More precisely, even if one started with a real- 

ization J, ~ whose embeddings are elementary, the commuting realization ~ ,  £b 

given by Theorem 2.28 may include embeddings which are just weak. 

3. D o m e s t i c  p r e m i c e  

This Section centers on the proof of Theorem 3.2, stated below. Once proved, 

Theorem 3.2 immediately implies that (t) holds for the domestic levels of K c 

(Corollary 3.3). 

Definition 3.1: A premouse Af = (J~,k[E,], E~) is said to be d o m e s t i c  if there 

does not exist u < a which indexes an extender E .  satisfying: 

1. t~ = crit(E~) is a limit of cardinals (~ so that J,[F, Iu] ~"5  is a Woodin 

cardinal;" and 

2. n = crit(E~) is a limit of cardinals T SO that J~[/~[ u] ~ "r is strong to n." 

Being domestic is a HI property and is therefore preserved by elementary 

embeddings. 

THEOREM 3.2: Let Af be a countable premouse which embeds weakly into an 

existing level of the K c construction. Assume that Af is domestic. Let u be tile 

least stage such that Af embeds weakly into J~4, and let ~r: Af --~ M r  be the left 

most weak embedding (wrt a fixed enumeration ~= (el [ i < w) orgY). 15 

Then for any normal, maximal, non-overlapping iteration tree T on Af of count- 

able length, there exists at most one cofinal branch o f t  which is super-realizable 

(wrt u, It). 

14 To help the careful reader, let us point out that the proof of Theorem 2.28 starts 
with a single coarse model 7~0 -- V and the realization of A 7 given by ~, ~, not 
with n distinct 7~i-s and individual realization of the premice Hi. 

15 By left most we mean that for any weak a: Af -+ A/[~, either a = lr or else 7r(e~) 
is less than a(ei) in the order of construction on ~4,, where i < w is least such 
that 7r(ei) ~ a(e~). 
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COROLLARY 3.3: Suppose that A~,  has been constructed and that fl4v is do- 

mestic. Let .t(4 be a countable elementary substructure of  A4~. Then 2(4 is 

Wl + 1 iterable. 16 Furthermore, i f  ~ is an enumeration of  $4 then there exists an 

iteration strategy of 2U4 which has the weak Dodd-Jensen property relative to ~. 

Proof: Reducing u as needed let us assume it is the least stage such that  A~4 

embeds weakly into ~4 , .  Let Ir be the left most weak embedding. Define an iter- 

ation strategy F for ~ by letting F(T)  be the unique maximal super-realizable 

branch through T.  (Existence and uniqueness are given by Theorems 2.28 and 

3.2.) If T is itself built according F then Theorem 3.2 applied to initial seg- 

ments of T guarantees that  the maximal branch is in fact cofinal, as needed. If 

lh(T) = Wl, collapse wl and obtain F(T)  in the generic extension. Theorem 3.2 

continues to apply in the generic extension. The uniqueness given by 3.2 and the 

homogeneity of the collapse imply that  this branch in fact exists in V. 

It  can be seen that  F has the weak Dodd-Jensen property relative to 8'. The 

reason is that  u was chosen least and 7r was chosen left most. We refer the reader 

to [NS99, Section 3]. | 

Corollary 3.3 establishes (t) for the domestic levels of K ~, demonstrating that  

the construction of K c cannot break down before it reaches a non-domestic pre- 

mouse. Assuming that  ft is measurable we can now apply Theorem 1.1 and so 

deduce Corollary 1.2. 

Remark 3.4: Theorem 1.1 itself is the combination of three results. The first, due 

to Todorcevic, shows that  PFA implies E]~,<~ fails for all uncountable cardinals 

~. The second, due to Steel, shows that  (assuming (~[) holds and ft is measurable) 
K e 

either (~+) = (t~+) v for measure 1 many n < f~, or else K c reaches a super- 

strong cardinal. The third, due to Schimmerling, shows that  below superstrong 
K c 

and assuming (t), K~ satisfies [7~,<~ for all ~.17 If (n +) = (~;+)v then [~,<o~ 

reflects from K ~ to V. Thus combing the three results gives Theorem 1.1. 

Steel's proof that  K c computes tc + correctly for measure 1 many t~ < ~ requires 

the uniqueness of F given by Case la  in the construction of K c (Section 2). It  is 

for this reason that  we cannot in Case lb  simply choose one of the extenders Fi 

and continue constructing. Instead we have to know that  Case lb  never occurs. 

Now [MitSt94, Theorem 9.2] (or [Jen97, Lemma 6.1] in the context of Jensen's 

indexing) demonstrates that  iterable pre-bicephali do not in fact exist. The it- 

erability given by (t) then implies (~lb) .  Thus to prove Corollary 1.2 we must 

16 For normal, maximal, non-overlapping iteration trees. 
17 There are stronger results; see [SZ]. 
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prove Corollary 3.3 not only for premice which embed into levels of the K c con- 

struction, but also (potentially) for pre-bicephali which embed into levels of the 

K c construction. (We then conclude that there are no pre-bicephali on the K c 
I 

construction, but this can only be done after the fact.) The iterability proof for 

pre-bicephali is essentially the same as the one which we give below (for premice), 

and we shall not trouble the reader with the tedious repetition. 

Let us start working towards a proof of Theorem 3.2. Assuming the existence 

of two super-realizable cofinal branches we will derive a contradiction by com- 

paring the easy phalanges induced by these branches. Thus the key to our proof 

is the ability to compare easy phalanges which contain only domestic premice. 

There are two conflicting requirements in any attempt to conduct such a com- 

parison. In forming the iteration trees of the comparison process we must first 

and foremost make sure that cofinal wellfounded branches exist at limit stages of 

the comparison. The easiest way to secure this would be to use linear iterations. 

Secondly we must make sure that the comparison terminates (more precisely we 

must secure condition (*) of Claim 3.29). The standard way to secure this is 

to use non-overlapping iteration trees so that generators are not moved. Our 

approach is to balance the two requirements. We shall use iteration trees which 

do move generators, but in a way limited enough that we can still secure 3.29(,) 

and show that the comparison terminates. This moving of generators will allow 

us to structure the iteration trees so that it is easier to obtain cofinal weltfounded 

branches. 

The precise structure of the trees we intend to use (balanced iteration trees) 

is stated in Definition 3.13. To have recourse to the results of Section 2 we must 

check that these trees are sturdy. This is done in 3.5-3.14. 3.16-3.23 prove 

the existence of cofinal branches through iteration trees in various special cases. 

Lemma 3.24 is our main tool in showing that balanced iteration trees which arise 

in comparison of domestic premice can be reduced to these special cases. The 

rest of the Section is a comparison process which proves Theorem 3.2. 

Definition 3.5: Let T~ be an iteration tree on a premouse Af. Fix an extender E 

and an ordinal 7 < lh(7~). 

We say that E confl ic ts  w i t h  g e n e r a t o r s  at e if crit(E) lies in the interval 

[crit(E~), lh(E~)) where E ~  is the e-th extender on 7~. g(E) is the least e such 

that E conflicts with generators at c if there are conflicts, and oc otherwise. 

We say that the pair E, 7 confl ic ts  w i t h  p r o j e c t a  at e if e is a truncation 

point on the branch of 7~ leading to % and crit(E) < p(Afj),  p(E, "y) is the least 

e such that E, ~ conflicts with projecta at e if there are conflicts, and 7 otherwise. 
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We say that E,  3" is conf l ic t  f ree  if (a) 3" < g(E); and (b) E,  ~/does not conflict 

with projecta. 

CLAIM 3.6: Suppose 7~ is maximal,  and E,  3" conflicts with projecta at e. Then  

cri t(E) < lh(E~) .  

Proof: By assumption e < n  3" is a truncation point on the branch leading to 

3', and (a) cri t(E) < p(AfZ). Let ~ + 1 be the successor of e in [e, 3']n. Since 7~ 

is maximal, (b) p(H~-) < cr i t (E~) .  Since the < n  predecessor of ~ + 1 is e, (c) 

cr i t (E~)  < lh(E~).  Combining a,b,c proves the Claim. | 

Definition 3. 7: An iteration tree 7~ on a premouse Af is su i t ab l e  if 

1. T/is  normal; 

2. T/is  maximal; 

3. For ~ + 1 < lh(7~) and 3" the < n  predecessor of ~ + 1, E ~ ,  "y is conflict free. 

CLAIM 3.8: I f  T~ is normal, maximal,  and non-overlapping, then T~ is suitable. 

Proof: For 3" + 1 < lh(7~) let hv denote the length of E~ .  Remember that 7~ 

is non-overlapping just in case that  (NOL) for all ~ + 1 < lh(7~), the immediate 

<r~ predecessor of ~ + 1 is the least 3  ̀such that cr i t (E~)  < h r. 

Claim 3.8 follows immediately from the minimality of 3' given by NOL, using 

the definition of conflict with generators and Claim 3.6. | 

LEMMA 3.9: Suitable iteration trees are sturdy. 

Proof: We work by induction on the length of the tree. The limit case is clear, 

as is the case lh(R) = ~ + 1 where ~ is a limit. So let us assume lh(7~) = ( + 2. 

By induction 2.24(3,4) hold for ~ < ~. We must verify these conditions for e = ~. 

Let 3' be the immediate <ra predecessor of ~ + 1. 

CLAIM 3.10: 2.24(4) holds at ~ = ~. 

Proof: Assume 7 is non-simple. Since we are dealing with a tree on a single 

premouse, non-simplicity can only be caused by a failure of 2.23(b). So there are 

truncations on the branch of 7~ leading to 3`. Let ~ be the largest such truncation. 

By Lemma 2.25 (which we can access through our induction hypothesis) p(Af~-) = 

p(Af~n). Now E~,3` does not conflict with projecta by 3.7(3). Since V is a 

truncation point on the branch to 3  ̀ we conclude that cr i t (E~)  :~ p(Af~-). Ill 

other words cr i t (E~)  _> p(Af~) as required. | (Claim 3.10) 
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CLAIM 3.11: 2.24(3) holds for e = ~. 

Proof'. Let 7" = Afff. E ~  is an extender on the sequence of 7". Let ~/be its 

index. Let t~ = crit(Eff), and let T be the successor of ~ in P ]] (U, 0). Let 

Ad denote Aft-- = .M~*+I. Note that by standard agreement of premice along an 

iteration tree, .M and P II (~1, 0) agree to T and E ~  is an extender over .M (else 

3" would not be the predecessor of ~). It is enough to prove 

(A) P(~) n ~ ( p  II <,j, o>) c ~-]l(~(J~)). 

An appeal to Fact 2.17 would then complete the proof of the Claim. Suppose 

(A) fails. By reducing ~ if needed we may assume that (0) for any ~, #, if (a) 

7 -< ~ < ~, (b) f/indexes an extender on/5  = A[~ whose critical point equal ~, 

and (c) the successor of~ in/511 (~/, 0) is T, then P(T)NEI(7)II (#/, 0)) c EI(~(A4)).  

STEP 1: If ~ -- 7 then 7" II (~, 0) is an initial segment of ~4 and (A) is clear. So 
let us for the remaining steps assume (1) ~ > 3'- 

STEP 2: If ~/ < a(7") then P(T) n E1(7:' II (u,0)) c P(T) n 1'. But standard 

agreement between premice on iteration trees (together with 1) imply that P(T)n 
7" C A4, and (A) follows. So let us assume (2) ~ = a(7"). In particular E ~  is 

the last extender predicate of 7", so n is E1 definable over 7". 

STEP 3: Let # be the largest element of [0, ~]T¢ n (ff + 1). If there are truncations 

on [#,~)n, let ~ < n  ~ be the largest such. Otherwise set ~ = #. Note that 
lh(E~) > ~ (else 3" couldn't be the predecessor of ~ + 1). By 1 and the normality 

of 7¢, it follows that the length(s) of the extender(s) used on [~, ~]n must be 
above ~. By 2 ~ belongs to the range of ,~,~.n Thus the extenders used on [~, ~]7¢ 

cannot overlap ~. It follows that  crit(i~,~) > ~. Since T is the successor of ~ in 

7" we conclude that (3) crit(i~,~) >_ T. 

STEP 4: If p(7" II (U, 0)) > T then P(T) n ~'1(7" II </1, 0)) C 7". But then standard 

agreement between 7" and .M would give (A). So assume (4) p(7" II (~1, 0)) ~ T. 

STEP 5: If k(7") >_ 1 then by 4, #(7") _< ~-. But this would contradict 3, since 

the way we take ultrapowers (see Section 2) is such that the critical points are 

below the true height. So k(P) -- 0 and by 2 we conclude that (5) 7" = P II (~/, 0). 
Let P --- H(--. By induction we know that 7~ [ ~ + 1 is sturdy. This and 3 imply 

that P(~-) VI E1(~(7")) C P(T) R E1(~(~5)). Given 5 it is thus enough to show 

(B) F(r) n ~(~(p)) c ~l(~(J~))- 
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STEP 6: If ~ _> "/ then (B) follows from 0 with f / =  c~(/3). (Note that 73 II 0) 
then equals/3.) Thus we may assume that (6) ~ < 7. 

Remark 3.12: Our proof so far followed in the footsteps of [MitSt94, Lemma 

6.1.5]. [MitSt94, Lemma 6.1.5] is stated for non-overlapping trees, and goes on 
to directly argue that 6 is impossible, using NOL. We must proceed differently 

since we are working with the more general concept of suitable iteration trees. 

We shall use our assumption that T~ is suitable in 7c and 9 below. 

STEP 7: Let ~ be least such that lh(Eff) > n. Extenders with critical point 

or greater cannot be applied to models indexed before ~. Since crit(i~,~) > T 

it follows that (7a) ~ _< 4. Using 6, ~ < % By normality, (7b) lh(E~) > n for 

L E [~, "y). By assumption T¢ is suitable. Since "y is the predecessor of E f  it 

follows that 7 -< g ( E f ) .  Using 75 it follows that (7c) cri t(E~) > n for ~ E [~, 7). 

In particular none of these extenders can be applied to models indexed before ~. 
Thus (7d) ~ < n  ~ for all ~ E ((, "y]. 

STEP 8: Let Q = A/ft. Let Q be the least initial segment of Q so that c~(Q) > 

lh(Eff) and p(Q) _< ~ if there is such a segment. Let Q -- Q otherwise. Using 7c 

we see that (8) for any c e ((, "y], A/C-, as computed relative to the branch [~, tire, 
is an initial segment of Q. 

STEP 9: Suppose A/C-' as computed relative to [~, 7]n, is a strict initial segment 

of Q. (In particular ~ < ~ is a truncation point on [~, ~/]n.) From the definition of 

it follows that p(A/¢-) > ~. But then Eft,  "y conflicts with projecta at ~. This is 
impossible, since "y is the < n  predecessor of ~ + 1 and T¢ is suitable. We conclude 

that A/g- cannot be a strict initial segment of Q. Using 8 it follows that (9a) A/C-' 
as computed relative to [~, "Y]n, is equal to Q. Suppose next there are truncations 

on ((, 7)7¢. Let ~ < ~/be the first such. We have i~.~: Q --+ A/~ elementary, and 
A/~- is a strict initial segment of A/~. It follows again that p(A/#-) > n and so 

Eft,  "l conflicts with projecta at ~. Again this contradicts our initial assumption 

in Lemma 3.9 that T~ is suitable. We conclude that  (9b) there are no truncations 

on ((, "y)r~. Suppose finally that "y is a truncation point on the branch leading 

to { + 1. Remember that A/ /=  A/4-, as computed relative to the branch leading 

to ~ + 1. If there is a truncation then AA is a strict initial segment of A/ff and 

as before we conclude that p(A/l) > n. But this is impossible; if E f  causes a 

truncation at "y then p(A/l) < c r i t (Ef )  = n by the maximality of 7~. Thus we 

conclude that (9c) ~4 = A/ft. 

STEP 10: Combining 9a,b,c we see that 7~ defines an embedding i~,~: Q ~ A4. 

Through our inductive assmnption we know that the extenders used on [¢, 7]r~ 
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satisfy 2.24(3). By 7c, these extenders have critical points at least ~-. It follows 
that (10) P(T) A } ] I ( ~ ( Q ) )  = P( r )  C) El(~(A,t)).  

STEP 11: Suppose ~ = (. Remember that crit(i~,~) > r by 3. From this 
and the definition of Q it follows that 7 5, which is equal to _Ar~- as computed 

relative to the branch leading to (, is an initial segment of Q. It follows that 
P(T) n Ei(~(75)) C EI (~ (Q) )  (with equality if 75 = Q). But this and 10 give 

(B), completing the proof of Claim 3.11. So let us assume that (11) ~ ¢ ~. 

STEP 12: By 11, 7a, and 7d, ~ < n  ~. ArC --, as computed relative to the 
branch leading to ~, is an initial segment of Q by 8. By 7c the extenders 
used on (~, ~)n have critical points at least T. These extenders, through our 

inductive assumption that 7~I~ + 1 is sturdy, satisfy 2.24(3). From all this it 
follows that P(T) CI E I ( ~ ( P ) )  C EI(~D(Q)). This together with 10 gives (B). 

1 (Claim 3.11, Lemma 3.9.) 

Definition 3.13: An iteration tree R on a premouse A/ i s  b a l a n c e d  a b o v e  ~j 

just in case that 

1. 7~ is normal; 

2. 7~ is maximal; and 
3. For ~ +  1 < lh(7~), ~ > ~: the <T~ predecessor of ~ +  1 is equal to 

p ( E ~ , m i n { ~ , g ( E ~ ) } ) .  
7~ is said to be b a l a n c e d  if it is balanced above 0. 

Observe that balanced iteration trees may move generators in a limited way. For 
¢ + 1 < n  ~ + 1 it is possible that E ~  overlaps E~ ,  i.e., cr i t (E~) < lh(E~).  
However cr i t (E~) cannot lie in [crit(E~), lh(E~)).  

LEMMA 3.14: Suppose T~ is balanced above ~l, and T~[ ~ I + 1 is non-overlapping. 

Then Tt is sturdy. 

Proof: Let us check that 7~ is suitable. (By Lemma 3.9 this is enough.) Con- 

ditions 3.7(1,2) follow trivially from the corresponding conditions in Definition 

3.13. 3.7(3) for ~ < 7/follows from Claim 3.8. 3.7(3) for ~ >_ ~ follows trivially 

from 3.13(3). II 

Lemma 3.14 may seem insignificant, but it is essential to our argument. It 

gives us access to the results of Section 2, particularly Lemma 2.25(b) which will 

be crucial later in Claim 3.32. It is our need to prove Lemma 3.14 that forced us 
to include conflicts with projecta in Definition 3.13; Claims 3.10 and 3.11 both 

required that we avoid conflicts with projecta. 
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Remark 3.15: Suppose 7~ is normal and maximal, E is an extender of Af~, and 

e is equal to p(E, min{~, g(E)}). If e < ~ then cri t(E) < lh(E~) .  (This follows 

using Claim 3.6.) Thus Af~ and Af~ n are in sufficient agreement that E can be 

applied to Af~ (or to the appropriate initial segment of this premouse). 

Definition 3.16: Let 7~ be a sturdy iteration tree on a premouse Af and let c~ be 

smaller than the length of T~. For 7 < n  c~ a truncation point of [0, a]n,  let A~ 

denote p(Af~-), where Aft- is computed relative to the branch [if, c~]n. 

T~ is said to be semi l inea r  a t  a just in case that for every ~ such that a < 

+ 1 < lh(n) :  

1. The < n  predecessor, ~, of ~ + 1 is either (a) greater than or equal to a or 

(b) a truncation point of [0, (~]n; and 

2. If (b) holds then cr i t (E~)  < A¢. 

If ~ is semilinear at c~ then 7~ can in fact be viewed as an iteration tree on the 

easy phalanx A~ [°,~]u induced by the branch of T/leading to c~. (Condition 2 of 

Definition 3.16 represents the limitations imposed by the exchange ordinals of the 

easy phalanx A~[0,~]~.) We denote this iteration tree by 7~*. Observe that 7~* is 

sturdy: Conditions 2.24(1-3) reflect trivially from T~ to T~*. The non-primordial 

roots of T~* correspond to failures of 2.23(b) on 7~. Thus an index ~/ of ~* is 

non-simple (as an index in 7~*) iff it is non-simple as an index in 7~. It follows 

that  2.24(4) too reflects from T~ to ~*.  

Definition 3.17: Let 7~ be a sturdy iteration tree on a premouse Af, and assume 

that 7~ is semilinear at ~. Let tT, ~ be a realization of the easy phalanx A~[ °,~]R. 

We say that (wrt if, ~) 7~ picks u n i q u e  rea l i zab le  b r a n c h e s  a b o v e  a if for 

any ~, strictly between c~ and lh(7~), 

1. The branch of ~ leading to 7 is super-realizable when viewed as a branch 

through T~* and with respect to the realization if, ~ of A~[°'a]u; and 

2. The branch of 7~ leading to ~/is furthermore the only cofinal branch of 7~ I ~' 

which satisfies 1. 

LEMMA 3.18: Let 7~ be a sturdy iteration tree of countable length 0 on a pre- 

mouse Af. Let a < 8. Assume that 

1. AT"[o,~]u is realizable. Let if, ~ witness this; 

2. Tt is semilinear at a; and 

3. (wrt if, ~) Tt picks unique realizable branches above a. 

Then there exists a co]inal branch b through R which (wrt ~, #) is super-realizable 

when viewed as a branch through Tt*. 
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Proof: By Theorem 2.28 there is a maximal super-realizable branch b through 

7~*. Viewed as a branch through 7~, b satisfies all requirements of the conclusion 

of Lemma 3.18. (It is cofinal because of assumption 3.) | 

LEMMA 3.19: Work under the assumptions of Lemma 3.18, except that instead 

of assuming 0 = lh(7~) is countable, assume that 0 = wl. Then the conclusion of 

Lemma 3.18 still holds. 

Proof: Let us for a while work in V[G] where G is generic over V for col(w, wl). 

By Remark 2.30 the proof of Lemma 3.18 goes through, producing in V[G] a 

branch b which satisfies the conclusion of Lemma 3.18. We claim that in fact b 

is an element of V. Given the homogeneity of the forcing col(w, wl), it is enough 

to argue that in V[G] the branch b is the unique branch satisfying the conclusion 

of Lemma 3.18. Assume for contradiction that some other branch b ~ satisfies the 

same. Let H be a countable elementary substructure of V u for some large regular 

#, and throw all relevant objects into H.  Let "V be the transitive collapse of H 

and k: V --+ H the anti-collapse embedding. Let G be V-generic over col(w, w~). 

can be found inside V. Let b and b~ be names for b and b t. Let b and b~ be the 

interpretations of k-l(]~) and k- l (b  ') using the generic G. Both belong to V. 

Let 7~ be the pre-image under k o f /~ .  Note this is equal to 7~[7, where 

7 = wl A H.  Let 7~* be the pre-image under k of ~*.  This again is 7~* [7. (c~ 

of course is not moved by k.) The elementarity of k guarantees that in V, b 

and b~ are two distinct super-realizable cofinal branches through 7~*. Composing 

the embeddings which witness this with k demonstrates that in V, b and ~t are 

distinct super-realizable cofinal branches through T~* [ 7- But this contradicts the 

uniqueness of assumption 3 in Lemma 3.18. | 

Let 7~ be a sturdy iteration tree on a premouse A/'. Let a < lh(7~) and let if, 77 

be a realization ofA~ [°'a]n. Assume that 7~ is semilinear at a and that b is either a 

branch through 7~ or a branch of 7~ with supremum greater than a. A realization 

~ ,  #b of ATb is said to c o m m u t e  with if, 77 just in case that it commutes with 

if, 77 when viewed as a realization of a branch through 7~*. Similarly the m e e t  

of ~, 77 and ~ ,  775 is defined according to Definition 2.29 applied to 7~* - -  it is 

ff[~ + 1 where c is the largest element of b A (a + 1). 

LEMMA 3.20: Let Tt be a sturdy iteration tree on Af of limit length O. Let 

(ak ] k < w} be a sequence of ordinals cofinal in O. Assume that 

1. For each k < w, T~ is semilinear at ak. 
Let yffk denote the easy phalanx jff[o,~k]~ induced by the branch of T£ leading to 

ak. Let ffk, 77k be realizations of the phalanges yffk, and assume 
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2. For k < k' < w, the realizations ffk, ~k and ~k', ffk' commute. 

Then there exists a cofinal branch b of T~, and a realization ~ , fib of j~fb, so that 

for each k < w the realizations ffk, ~k and ~ ,  ~b commute. 

Proof: Let us say that  a finite descending sequence of stages ff is a p e r m a n e n t  

r e s i d e n t  if there exists k < w such that 

• ff is an initial segment of 17k; and 

• For all k' > k, ff is an initial segment of the meet of the k-th and the k'-th 

realizations. 

Non-trivial permanent residents certainly exist: ffk all start with the same first 

stage. This stage is a permanent resident of length 1. 

Let ~ be the minimal permanent resident, using the lexicographic (Brouwer- 

Kleene) order on descending sequences of ordinals. Let k witness that ~ is perma- 

nent. Let ~l be the last (smallest) stage in g. For 1 _> k let el be the unique index 

of a premouse of A7 "l such that  ul~ = ~. Such an index exists by the demands of 

commutativity and the fact that ~ is permanent. The demands of commutativity 

also imply that el <rz ct, for l < l', that  there are no truncations on the branch 

[el, el,)n, and that the following diagram commutes: 

7f I 7fell 
el 

CLAIM 3.21: For every I > k, there exists j > l such that ej > c~l. 

Proof'. Fix 1 k k and assume for contradiction that ej _< al for all j > 1. 

It follows that el < ej are both indices in A~ l. Since there are no truncations 

on [el, ej)T¢ we conclude that (1) ej = El. Since Ktle I + 1 = ff is the minimal 

permanent resident, there exist arbitrarily large j > l such that (2) the meet of 

the j - th  and (j + 1)-st realizations is precisely ffl F El + 1. By thinning (ak I k < w) 

if needed we may assume that 2 holds for all j > I. By 1 it follows that El is 

a truncation point of [0, C~j]T¢ for all j > I. Let ~j + 1 be the successor of El 

in [0, aj]7¢, let nj = cr i t (E~) ,  and let Aj = p(A/~+l ). We have (3) Aj _< ~j 

since T¢ is maximal. Note that ( j+l  ~ a j  by 2 and the definition of the meet. 

The demands of semilinearity at a j ,  specifically 3.16(2), therefore imply that (4) 

nj+l < Aj. But 3 and 4 together produce an infinite descending chain of ordinals, 

giving the desired contradiction. | (Claim 3.21) 
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It follows from Claim 3.21 that the el-s converge to 0, and therefore define a co- 

final branch of 7¢. Let b be this branch. It is easy to see that A~ b is realizable. The 

realization includes ~klek , f fkIek , followed by *l and ~r, where 7r is the direct limit 

1 l > k (well defined using the commuting diagram above). of the embeddings ~r~,, 

Clearly this realization commutes with all previous ones. | (Lemma 3.20) 

LEMMA 3.22: Work under the assumptions of Lemma 3.20. Then there is only 

one branch b which satisfies the conclusion of  Lemma 3.20. 

Proof: Let b be the branch defined in the proof of Lemma 3.20, and assume for 

contradiction that c is distinct from b and satisfies the conclusion of the Lemma. 

Fix ff~, ffc which witness this. 

We claim to begin with that gc is permanent. Indeed, let k be large enough 

that ak is bigger than all truncation points of c. The fact that T¢ is semilinear at 

ak easily implies that  gc is an initial segment of ffk. The fact that T~ is semilinear 

at ak, then implies that  ffc is an initial segment of the meet of the k-th and k'-th 

realizations, for k' > k. 

Work now with k < w large enough that all truncations on c occur before ak, 

and large enough to witness that ff (of Lemma 3.20) is permanent. For I _> k, let 

~l be the largest element of c which is less than or equal to al.  It  is enough to 

verify that for arbitrarily large l < w, ~l is equal to el (of Lemma 3.20). Since c 

is cofinal there certainly are arbitrarily large I < w for which c A (al, at+l] is not 

empty. Let us work with such an l and aim to prove that ¢I = el. 

The semilinearity of 7¢ at al implies that (t is an index of a premouse of j~l. 

Further, the commutativity satisfied by e implies that  ~c and # I ~t + 1 are the 

same. Now the fact that  ~c is permanent together with the minimality of 

implies that ~l _< el. Thus it is enough to eliminate the possibility that (t < el 

strictly. Assume for contradiction that this is the case. 

Before proceeding further let us note that the above argument can be repeated 

for l + 1, demonstrating that  ~l+l <_ el+l (so in fact ~l+l <_n el+l). Our choice 

of I is such that c N (at, al÷l] ~ 0 and so by definition we have ~1+1 > al _> el. 

Combining this with our assumption for contradiction we see that ~t < el < ~1+1. 

Remember that by choice of k there are no truncations on [~l, ~l+l)n. In 

particular ~l is not a truncation point of this branch. Now ~l, being an index 

below el of a premouse of .h~ l, is a truncation point on [~t, el)~. As ~l is not a 

truncation on [~l, ~l+l)n, el cannot belong to (~l, ~l+l)n. Since we know that 

~l "~ el < ~l+l and that ~l+1 _<n el+l we conclude that et ~ n  el+l" But this is a 

contradiction. | 
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LEMMA 3.23: Let Tt be a sturdy iteration tree on Af of length wl. Let 

(a~ I t < wl) be an increasing sequence cofinal in wl. Assume that 

1. For each t < wl, 7~ is semilinear at a~. 

Let Af~ denote the easy phalanx jff[o,~,]u induced by the branch of  T~ leading to 

a~. Let g~, ff~ be realizations of the phalanges Af~ and assume that 

2. For ~ < ~' < wl, the realizations ff~,ff~ and zT~', ff ~' commute. 

Then there exists a cotlnal branch b of Tt and a realization 2 ,  if" o l a f  b, so that 

for each ~ < wt the realizations 17 ~, if* and 2 ,  fib commute. 

Proof: Apply Lemma 3.20 in V[G] where G is generic for col(w, Wl). Let b and 

2 ,  #b be the branch and realization given by Lemma 3.20. Observe that 2 ,  fib in 

fact commutes with 17, ff~ for all ~ < Wl (not only those ~-s which belong to the 

particular w-sequence of the generic extension used in applying Lemma 3.20). 

The commutativity condition satisfied by b, 2 ,  fib is therefore independent of the 

choice of G. The uniqueness given by Lemma 3.22 together with the homogeneity 

of the collapse now imply that b is in V. | 

The previous Lemmas demonstrate that it is possible to find cofinal realiz- 

able branches through iteration trees with many points of semilinearity. The 

next Lemma shows that if one works with domestic premice, and uses balanced 

iteration trees, then enough points of semilinearity do indeed exist. 

LEMMA 3.24: Let Tt be a sturdy iteration tree on a domestic premouse Af. For 

+ 1 < lh(7~) let V~ denote the index (in N ' : )  of  the ~-th extender used on Tt. 

Let a < lh(T) be a limit, let 5~ = sup{7~ I ~ < a}, and assume that for all 

~ >_c~, 

(*) Af~nll@~,0) ~ "5, is a Woodin cardinal." 

Assume/~nally that T~ is balanced above c~. Then T~ is semilinear at c~. 

Proof'. Assume for contradiction that  T¢ is not semilinear at a, and let ~ >_ a be 

the least counter example to semilinearity. Since 7¢ is balanced, the <T¢ prede- 

cessor o f ~ +  1 is p(E~ ,  min{~, g(E~)}).  Since ~ witnesses failure of semilinearity, 

certainly p(E~, min{~, g(E~)}) < a. 

We claim that  in fact g(E~)  < c~: Assume otherwise for contradiction. Then 

<_ g(E~)  < ~. By the nfinimality of (, the largest element, % of [0, g(E~)]n  O 

(~ + 1) is either (a) c~ or (b) a truncation point of [0, ~]n. If (b) holds then 

(e) the first extender used on [% g(E~)]n must have critical point smaller than 

A-~ = p(A/'~) (where Aft- is computed relative to the branch [0, ~]n). Let e = 
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p(E~,min{~,g(E~)}). Since e < c~ is on the branch leading to g(E~) we must 
have ~ _<n 3'. Suppose first that e = % Then b holds. By Definition 3.5, (d) 
e is a truncation point of [0, g(E~)]n. It follows by maximality of "R that (e) 
p = p(AfZ) (where Aft- is computed relative to the branch [0, g(E~)]n)  is at most 

the critical point of the first extender used on [e, g(E~)]n. Again by Definition 
3.5, (f) cr i t (E~) < p. Combining f, e, and c we get cr i t (E~)  < AT. But this 
implies that c satisfies conditions lb and 2 of Definition 3.16, so ~ is not a counter 

example to semilinearity. Suppose next that e < n  ~ strictly. Since 7 is a point on 
[0, g (E~)]~  above e we may in d and the definition of p for f replace [0, g (E~)]~  

with [0, "~]n- Since "y _<n a we may then replace [0, ~/]n with [0, a]T¢. But then 
e satisfies conditions lb and 2 of Definition 3.16, so again ~ is not a counter 
example to semilinearity. Thus in either case we obtain a contradiction. 

Let ~ = g(E~). We have ( < a by the above, and cri t (E~) lies in the interval 

[cr i t (E~) , lh(E~))  by Definition 3.5. We shall show that A/fi is not domestic, 

thereby deriving a contradiction to our assumption that A/ is domestic. The 

witness that Af~ is not domestic will be the extender E~.  
Since g(E~) < a and ~ >_ a we have cri t (E~) < 5~ _< lh(E~).  Our assumption 

(*) and the elementarity of the embedding coded by E ~  thus imply that cr i t (E~) 

is a limit of Woodin cardinals in A/fi cut at the successor of cri t(E~).  Since 

A/fill (~,¢, 0} and A/fi have the same subsets of c r i t (E~) i t  follows that c r i t (E~) i s  
a limit of Woodin cardinals in A[~ll('y¢, 0). This, our knowledge that cr i t (E~)  E 
[crit(E~), lh(Ey)) ,  and the elementarity of the embedding coded by E~ ,  imply 
that cr i t (E~) is a limit of Woodin cardinals in A/(¢11(7¢,0}. Condition 1 in 
Definition 3.1 therefore holds, and it remains only to verify condition 2. Assume 
for contradiction that condition 2 fails, and fix some fl < cri t (E~) so that there 
are no cardinals of JV'fi which lie between fl and cri t (E~) and are strong to 

cri t(E~).  Using the elementarity of the embedding coded by E ~  we have 

(**) No n e [crit(E~), lh(E~)) is strong to lh(E~) in Af~I[(~,  0). 

Remark 3.25: Note our use of the fact that the embedding coded by E ~  sends 

cri t (E~) to lh(E~).  We are thus making implicit use of the method of indexing 

explained in Section 2; if the length of an extender were defined differently we 
would not be able to claim (**) as stated, and the interaction with condition 3 

below would be ruined. 

We have at our disposal ~ and an extender E on the sequence of A/'fi (namely 

E~) ,  with the property that 

I. ~ > ~ ;  
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2. lh(E) _> lh(E~); and 

3. crit(E) lies in the interval [crit(E~), lh(E~)).  

(Let us point out that 3 is a direct consequence of the definition of g(E) in 3.5.) 

To derive a contradiction to (**) it is enough to show that the restriction of E 
to any ordinal ~- < lh(E~)  belongs to Af~[l('y~,0}; E is indexed above "y¢ and 

so these restrictions certainly are strong extenders of Af~[] (~/¢, 0}. In light of 3 
these restrictions would witness that n = crit(E) contradicts (**). The argument 
we give below doesn't quite do this. Instead we will either prove that the above 
restrictions belong to Af~[[(~/¢, 0), or else will produce ~ < 4 and an extender 

/~ which satisfy 1-3 above. Applying this argument inductively (reducing 4 as 

necessary) gives a contradiction to (**), thereby proving that condition 2 in 

Definition 3.1 holds. 

Let us begin the argument. We follow a line of reasoning similar to one used in 
[Jen97, §6]. By 1, "y< is a cardinal of Af t .  If E is not the last extender predicate 

of Af~ then the extender E belongs to Af t .  By acceptability, for any T < lh(E~ 4) 
tile restriction EIT belongs to Affi[]('~¢,0). But Affi and Affi agree up to "y¢. 
Thus BIT belongs to Affi][(7¢, 0) and we are done. 

Consider then the remaining case, that E is the last extender predicate of Af~ n. 

First let us suppose that on the branch of T¢ leading to 4 there are truncation 

points which are greater than ~. Let ~ be the last such truncation point, so that 

R defines an elementary embedding i = i~,~: Aft- -+ Af~ e, and Aft- is a strict 

initial segment of Af t .  Le t /~  be the last extender predicate of Aft .  The map 

i thus sends k to E. Observe that crit(i) cannot lie in [crit(E~), lh(E~))  since 
any extender whose critical point lies in this interval would be applied to Af~ ¢ or a 
premouse before it, and therefore would not be used on the branch [~, 4]T¢. crit(i) 
also cannot be smaller than cri t(E~);  if it were then the range of i would contain 
no elements of the interval [crit(E~), lh(E~)], but we know that the range of i 
does contain such an element, namely crit(E) -- i(crit(/~)). Thus we conclude 
that crit(i) >_ lh(E~).  It follows that lh(/~) must be at least lh(E~),  and that 
crit(/~) equals crit(E). Thus ~ < 4 and/~  satisfy 1 3. 

Let us finally consider the case that E is the last extender predicate of J~ffi, 

and there are no truncation above ~ on the branch of 7¢ leading to 4. Let ~ be 

the largest element of [0, 4]n which is smaller than or equal to ~, and let ~ + 1 
be its successor on this branch. Then ~ + 1 _< 4 so that certainly ~ < 4. Let fif 
denote either Af~ if ~ is not a truncation point of [~, ~]n, or Aft- if it is. In either 

case, the iteration tree 7¢ defines an elementary embedding i = i~,~: A~f --+ Affi. 

The first extender used to produce i is the extender E~ .  Let /~  be E~ .  
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Le t /~  be the last extender predicate of J(f, so that  i(/~) = E.  Thus cri t(E) = 

i(crit(/~)) and therefore belongs to the range of i. Now no elements of the interval 

[crit(E), lh(/~)) can belong to the range of i. The normality of 7¢ implies that  

lh(E) > lh(Eff)  > crit(E).  Since cri t(E) belongs to the range of i we conclude 

that  cri t(E) > crit(E).  On the other hand, since /~ is applied to a premouse 

of 7¢ indexed at or before ~, certainly crit(/~) is smaller than lh(Eff),  crit(/~) 

therefore belongs to (cr i t (E~) ,  lh(E~))  and 3 holds. Since crit(/~) > c r i t (E~)  

cer ta in ly/~  ~ E ~  so ~ ¢ ~ and 1 is satisfied. 2 also is satisfied because of the 

normality of T¢. Thus ~ < ~ and /~  satisfy 1-3 as required. | 

Equipped with the previous Lemmas we can begin the proof of Theorem 3.2. 

Work with Af and v, lr as given by Theorem 3.2 and assume towards a contra- 

diction that  T has two distinct super-realizable branches b and c. Let 7 ~ and 

be the easy phalanges induced by these branches, and let ¥ and ~ be the super- 

realizations of these phalanges, is We view the premice of 7 ~ and Q as indexed by 

their index on T.  Thus the last premouse on both 7 ~ and Q is indexed by lh(T).  

Let 77 denote the length of T.  

We shall (roughly speaking) compare 7 ~ and Q using balanced iteration trees, 

appealing to Lemmas 3.18, 3.19, 3.20, and 3.23 to obtain branches through the 

iteration trees produced. We shall make sure for each a either that  both trees 

pick unique realizable branches at a,  or else both  trees are semilinear at a .  To 

secure this second possibility we shall use Lemma 3.24: At a-s  where there are 

two or more realizable branches we will take advantage of the distinct branches 

to make sure that  the hypothesis of Lemma 3.24 - - t h e  condition (*) that  i s - -  is 

satisfied. Our argument in these circumstances is similar to the multiple board 

comparison used by [Ste93], though we shall avoid actually adding boards to the 

comparison. 

Though our construction is really a comparison of 7 ~ and Q, it is perhaps bet ter  

viewed as the construction of two iteration trees which extend T. On one side we 

construct an extension L/which uses b as the branch [0, ~/]u, while on the other 

side we construct an extension V which uses c as the branch [0, ~/]v- 

We construct these iteration trees by induction on a > ~/. At stage a we will 

18 The realization of ~-b includes a finite sequence of ordinals in addition to 3. The 
first ordinal in this sequence is v, and subsequent ordinals in the sequence are 
determined inductively by condition 2 of Definition 2.27, given A 7"b and 3. Since 
this finite sequence of ordinals is uniquely determined by v, b, ~ we suppress its 
mention below. We similarly suppress mention of the ordinals involved in the 
realization )~ of c, and in all realizations of future branches, in the trees on both 
sides. 
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have on the two sides of the comparison: 

A. A (padded) balanced iteration tree U [ a  which extends T and so that  

[0, ~?]u = b; and similarly 1/[ a which extends T and so that  [0, ~?]v = c; 

B. A set of ordinals B M a which is a c l o s e d  subset of a and so that  ~ C B; 

For ~ E B A a let b~ denote the branch of/¢ leading to the &-th premouse of this 

tree. Let P~  be the easy phalanx induced by this branch of/,/. Define ca and 

Q~ similarly on the Q side. 

C. Realizations ~ of 56a for ~ E B Cl a,  and similarly realizations :~a of Q~ 

for ~ C BNc~. 

We shall maintain the following conditions: 

1. Both the iteration trees constructed are balanced above ~?. Note then that  

by Lemma 3.14 both trees are sturdy; 

2. Above rl the iteration trees arise in comparison. In other words, for a >_ ~? 

the index of the a - th  extender used on/4 and 1) is always the least 3'a which 

represents a disagreement between the premice P~ and Q~,. If there are no 

disagreements we end the construction; 

3. For 6L C B M a,/,4 and/2  are both  semilinear at 5L; 

4. Any two of the realizations r ~a, C) E B M a commute. Similarly on the Q 

side; 

5. If  B C? a has a maximal element, fl, then the tree/A picks unique realizable 

branches above fl (wrt ~ ) .  Similarly on the Q side. 

Having specified conditions 1-5, the construction itself is straightforward. We 

begin the construction at stage a = y + 1 with the obvious iteration trees. On 

the P side it is the iteration tree which extends T using b, and on the Q side it 

is the iteration tree which extends T using c. The realizations T -~ and ~ are set 

equal to "7 and ;~ respectively. We set B N ~ + 1 = {rl}. By [Ste93, Theorem 2.1] 

- - o r  rather [Jen97, §6, Lemma 2], as the proof for premice with Jensen's indexing 

is slightly more compl ica ted--  5n is a Woodin cardinal of P~ M Q~, where 5n is 

the supremum of indices of extenders used in 7-. (For convenience let us refer to 

these indices as 7~, ~ < ~1.) It  then follows from condition 2 that  for any (} _> ~, 

?allTa = QailTa ~ "~n is a Woodin cardinal." 

By Lemma 3.24 it follows that  condition 3 holds for 0 > ~1, with ~ = rl. 

Suppose now a has been reached, where a is a successor ordinal. We let 

V~-i be the least index of a disagreement between P ~ - I  and Qa-1  if there is a 

disagreement. On each side we either pad - - i f  7~-1 does not index an ex tender - -  

or extend the iteration tree using the extender indexed at 7a-1.  We extend both 
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iteration trees in a balanced fashion. This is possible by Remark 3.15. We then 

set B N a + 1 = B N a. This completes the construction in the successor case. 

Suppose next a has been reached, where a is a limit ordinal. 

CLAIM 3.26: There exists a cofinal branch ba through 14[ a and a realization "F ~ 

of  the easy phalanx induced by this branch, so that ya commutes with C a for 

every (r C B n a. Similarly on the Q side. 

Proo f  If B n a is bounded in a use Lemma 3.18 (or Lemma 3.19 if a = wl) 

together with condition 5. If B N a is cofinal in a use Lemma 3.20 (or Lemma 

3.23 if a = wl) together with conditions 3 and 4. I 

Of the branches given by Claim 3.26, pick cofinal branches ba and ca in such 

a way that either 

- There is no disagreement between the direct limits Pb~ and Qc~ ; or if this 

is not possible, 

- pick ba, ca so as to minimize the index ~'a of the first disagreement between 

"~ba and Qc~. 

Extend the iteration t r e e / l [ a  by letting Pa be the direct limit along the branch 

ha. Work similarly on the Q side. 

If B N a is cofinal in a we set by necessity B N a + 1 = B N a U{a}. Our choice 

of b~ together with the fact that all future extensions of/~ [ a are semilinear at 

points in B N a easily imply that these future extensions are semilinear at a too. 

The same goes for the Q side. This secures condition 3 for future extensions, and 

the construction is then completed for this stage. 

Let us then assume finally that B N a is bounded in a and thus has a maximal 

element ~. If the branches ba and ca given by Claim 3.26 are the unique super- 

realizable (wrt ~ and )~) cofinal branches of L/[a  and Y[a ,  then we set B n 

a + 1 ---- B N a. Condition 5 is maintained and the construction is completed for 

this stage. If uniqueness fails on either side, we must set B N a + 1 ---- B N a U{a} 

in order to maintain 5. The fact that condition 3 continues to hold for future & 

(with ~ = a) follows from Lemma 3.24 together with the following Claim: 

CLAIM 3.27: Assume that in stage a uniqueness fails on either side of  the 

comparison (or on both). Let ~a = sup{7~ I ~ < a) .  Then for all & > a, 

Pa[ITa = Qa[iTa ~ "~a is a Woodin cardinal." 

Proo f  Assume for definitiveness that uniqueness fails on the 7 ~ side, so that 

there is a cofinal realizable branch b' of/¢ I a which is distinct from ba. Note that 

both Pb~ and Pb' disagree with Qa for otherwise the comparison would have 
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ended at stage c~. By [Jen 97, §6, Lemma 2] the fact that ba and b I are distinct 

implies that 5~ is a Woodin cardinal in Pb. N Pb'. 

Consider first the possibility that 5~ fails to be a Woodin cardinal in P ,  = 

Pb~. It follows that T'b. and Pb' must disagree. Let 3' be the index of the first 

disagreement between these premice. Then either 

i. Pb. and Q~ disagree before 3  ̀+ 1; or else 

ii. Pb' and Q~ disagree before 3  ̀+ 1. 

(For otherwise Pb, It7 + 1 and Pb' tit + 1 would both be initial segments of Q~, 

and would hence agree.) Our choice of b~ minimized the first disagreement 7~. 

From i,ii it therefore follows that 

3'c~ ~_3'. 

But then 5~ is Woodin in P~I]3'~ and so the conclusion of Claim 3.27 holds for 

& = c~. With regard to greater &: 3', is a cardinal of T)a and T~all3", = T~c, ll3"~. 

Thus 5~ is a Woodin cardinal in Pa and so certainly a Woodin cardinal in Pa 113'a. 

This completes the proof of Claim 3.27 under the assumption that (is is not 

a Woodin cardinal of T'~. Considering the other possibility: If 5~ is a Woodin 

cardinal of P~ then it is a Woodin cardinal of Pa for all & _> a, and so certainly 

a Woodin cardinal of T'a 113'a. II 

We continue the construction until reaching a stage where there are no further 

disagreements, or until we reach a = wl + 1, which ever comes first. As always 

in the case of comparisons we have the following: 

FACT 3.28: Two extenders E and F are said to be c o m p a t i b l e  i f  they have the 

same critical point ~; the same domain; and for each A C ~ in their domain, 

E (A)  n A = E(A)  n A where A = min{lh(E), lh(F)}. 

Let E,  F be two extenders which were used in the construction, on Lt and on 

V respectively. I f  E and F are compatible then they are in fact equal, and were 

used at the same stage on the trees, before 7. In other words the extender E = F 

was used on T.  

Proof  (sketch): Say E = E~ and F = E~.  If ~ = ~ then compatibility implies 

E = F and the nature of our construction is such that this can only happen 

before ~1. So suppose ~ ¢ (; say ~ < ( for definitiveness. Note 7¢ is a cardinal 

of hf~ v, lh(E) < lh(F),  and (by compatibility) F I lh(E) = E. One can show 

E = FI  lh(E) E Af~ v. (This may require use of the initial segment condition, 

2.4(5).) But E~ c Af~ v implies 3̀ < is not a cardinal of Af~ v, a contradiction. | 
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Fact 3.28 is an inner model staple. As always it can be used to argue that the 

comparison terminates at a countable a. We must however take some care, since 

our iteration trees are balanced rather than non-overlapping. 

CLAIM 3.29: The above construction mus t  terminate  at a countable stage a. 

Proof: Assume otherwise. Let 8, 5 be the final branches (of length wi) on the 

trees/4 and l). Note that both 8 and 5 are closed unbounded subsets of wl. Since 

both Q and 7 ) consist of countable premice, there must exist a club C C wi - y of 

limit ordinals so that C c b; C c ~; and iu~,~l (~) = iv~,~l (() = wi for each ~ E C. 

For each 4 E C let a~ be the largest a such that a + 1 E 8 and crit(E~ u) < 4. 

(Note that  there can be only finitely many such a-s, since the direct limit along 

/~ is wellfounded.) Define fl~ similarly on the Q side. By thinning C if needed, 

we may assume that for 4 E C in fact crit(E~U¢) = 4 and crit(E~¢) -- 4- Since 

/4 is balanced, crit(i~ u +i w ) cannot lie in [crit(E~U ), E u lh( a¢))- The maximality 
, 1 

in our choice of a~ implies further that crit(iau¢+i,~l) is strictly greater than 

crit(E~U ) = ~. Combining these two statements we conclude that 

i .u lh(E~U~) (,) e r  > 

and similarly on the Q side. The rest of the proof follows standard lines: By Fact 

3.28 there must exist X~ C 4 so that  

for each 4 E C, where A~ = min{lh(E~U¢),lh(E~¢)}. Using (,)  one sees that 

for any ( > max{aofl¢} in C. But now a standard pressing down argument 

produces a contradiction. 1 

Readers familiar with the argument used in the case of non-overlapping trees 

will note that  the only difference between this standard argument and our proof 

of Claim 3.29 is in the choice of ae + 1 and fl~ + 1. In the case of non-overlapping 

trees these ordinals are the successors of 4 in 8 and ~ respectively, and this is 

enough to secure (,).  In our case securing (,)  requires going a bit further, to the 

last points where an extender with critical point 4 (or smaller) is used on b, 5. 

Let 0 < wi be the end stage of the comparison, so that there are no disagree- 

ments between Pe and Q0. What follows is a short discussion with one recurring 

motif. We shall argue under various circumstances that embeddings induced by 
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the two iteration trees are equal. From this we shall conclude that the extenders 

giving rise to these embeddings are compatible, and thus derive a contradiction 

using Fact 3.28. We shall consider various cases, but in all cases we end with a 

contradiction. Thus we shall finally obtain a contradiction to our initial assump- 

tion that there are distinct realizable branches through T, completing the proof 

of Theorem 3.2. Before starting with this discussion, let us make the recurrent 

mot i f  precise: 

CLAIM 3.30: Let a be a point  on [0, O]u which is greater than or equal to the last 

truncation point, i f  there are truncation points  on this branch. Recall that  7:'~ 

is an initial segment  o f  P~ (it is strict iff a is a truncation point)  and It defines 

i u . ~,8" P ~  --~ Pe. Pick fl on [0, O]v similarly. 

A s s u m e  that  Po = Qo, that  P ~  = Q~,  and that  ~,o'u = i~, o. Then  there exists 

an ordinal ~ < r I such that 

* ~ is greater than both a and fl; 

. ~ belongs to both [0, O]u and [0, O]v; and 

i u . i v . • ~,0" Af~ -+ 7~0 and ¢,o" Af~ -+ Qo are equal. 

Proof: Let J~f denote the common value of P0, Qe, let j denote the embedding 

i u = i  v and let n b e t h e c r i t i c a l p o i n t o f j .  a,9 fl,0, 

Let 0 + 1 be the last point on In, 0]u for which cri t(Ea u) = n (there can be 

at most finitely many such points). The fact that  L/ is balanced above ~ and 

non-overlapping up to ~/ implies that crlt(za+l,e)" -u >_ lh(EaU). Similarly on the 

Q side let ~ + 1 be the last point on [/3, 0]v so that crit(E~) = n, and obtain 

crit(i~+l,e) >_ lh(E~). Thus both za+l, 0 " u  and i v-~+l,0 have critical points at least 

A where A min{lh(E~U), lh(E~)} Since .u = i v = • ~,0 ~,0 we now conclude that  Ea u 

and E~ are compatible. 

Applying Fact 3.28 we are left with the knowledge that 0 =/~ < rl and E u = 

E~. In particular both extenders have length equal to A. Let ~ be the common 

value of c) + 1 and/~ + 1, and let F be the common value of Ea u and E~. Then 

< r I belongs to both (a, 0]u and (/3, 0Iv as required. Note that in particular we 

h a v e a = / 3 a n d i  u = i u ~,¢ ~,¢, as both embeddings are equal to iT~,~. To complete 

the proof of the Claim it remains to verify that  i u = i v To that end note that 
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we have on the two sides the following diagrams: 

Xr 

X. I tv 
• / . v  I 

Since the critical points of the vertical maps on both sides are greater than A = 

lh(F) it follows immediately that the vertical maps are the factor embeddings. To 

be more precise (say on the T' side), any element of Ale has the form z~,¢(f) (fi) 

where fi is some tuple of ordinals below A. (We are using here the fact t ha t /4  

is normal; all extenders on [a, (]u have length at most A.) i~, o must send this 
{ 
iU~,o( f element to k ) l  The same applies on the Q side. Thus in both (~). r e a s o n i n g  

diagrams the "vertical" maps can be recovered from the diagonal and horizontal 

maps. Since the diagonal and the horizontal maps are the same on both sides, we 

conclude that  the vertical maps are the same on both sides, as required. | 

COROLLARY 3.31: Let 6 be a point on [0, O]u which is greater than or equal to 

the last truncation point (if there are truncations on this branch). Pick ~ on 

[0, 0Iv similarly. 
Assume that Po = Qo. Then it cannot be the case that P~- = Q~ and 

• u = i v_ 
Zg*,O 13,0" 

Proo~ Assume otherwise. We can thus apply Claim 3.30 with a = ~ and 

fl = ~. Let 40 < ~? be the ordinal produced by Claim 3.30. Working inductively 

we construct an increasing sequence of ordinals ~, < 7/so that (a) ~ belongs 

to both [0, O]u and [0,0Iv; and (b) i~,0 = i~,0. We have already defined 40. 

To define ~,+1, apply Claim 3.30 with a = fl = ~,. In the case of limit ~ let 

~ = sup{~v [ ~ < 5}. That  ~ belongs to [0,0]u and [0, O]v follows from the 

induction and the fact that both these branches are closed sets of ordinals. 

Continue this construction until the sequence (~,} is cofinal in ~?. Let d be 

the cofinal branch through T which contains the ordinals of this sequence. Then 

d C [0, O]u and also d C [0, O]v. Since both branches are closed we have 71 • [0, O]u 

and also ~/• [0, O]v. From this we conclude that both [0, ~]u and [0, ~]v are equal 

to d. But this contradicts our initial assumption that [0, ~]u = b and [0, Y]v = c 

are distinct branches through T.  | 

Equipped with Corollary 3.31 let us proceed with the discussion. Our aim is 

to obtain a final contradiction. 
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CLAIM 3.32: At  least one of the following two possibilities holds: 

1. There are no truncations on the branch ofl4 leading to 790; or 

2. There are no truncations on the branch of V leading to Qo. 

Proof" Assume for contradict ion tha t  there are t runcat ions  on bo th  sides. Then  

by necessity bo th  790 and Q0 are not  sound. In par t icular  nei ther  one can be a 

str ict  initial segment  of the other  and so 790 = Q0. Let  us use 27 to denote  their  

common  value. Let  (~ be the last t runca t ion  point  on [0, 0]u and let /3 be the last 

t runca t ion  point  on [0, 0Iv. Since b / i s  sturdy we may  appeal  to L e m m a  2.25(b). 

Thus  P~-- = ~(Af) and iu0:  P~-- --+ J~  is the anti-core embedding.  Similarly on the 

Q side, Q~ = ~(27) and i~,0: Q~ --+ 27 is the anti-core embedding.  In par t icular  

~a,e'u is equal to i~,0, but  this is a contradic t ion by Corol lary 3.31. | 

CLAIM 3.33: There are in fact no truncations on either of [0, O]u, [0, O]v. 

Proo~ By Cla im 3.32 there are no t runcat ions  on a t  least one of the two sides. 

Assume for definitiveness tha t  there are no t runcat ions  on [0, O]u, so tha t  i u 0,0 

embeds  Af into 79o. 

Assume for contradic t ion t ha t  there are t runcat ions  on [0, O]v. Then  Qe is 

not sound and so by necessity 79o is an initial segment  of Q0. Our  construct ion 

of V was such t ha t  [0, O]v is super-realizable (wrt the original real izat ion u, 7r of 

A/'). Since there are t runcat ions  on this branch, super-real izabil i ty implies tha t  

Q0 embeds  weakly into A/[~ for some p which is s tr ict ly smaller t han  u. Let  

)~: Q0 --+ Wlo witness this. Let  73 = )~(79o)- Then  73 is an initial segment  of A4~ 

and X[79o: 790 -+ 73 is weak. Let  ~ = Reso[73], and let ?r = ao[73] o ()~IPo) o iU, o . 

Then  ~r: A; -+ M ~  is weak, and P _< 0 < u. But  this contradicts  our initial 

a s sumpt ion  in Theo rem 3.2 regarding the min imal i ty  of u. | 

Given Cla im 3.33, the fact tha t  [0, O]u and [0, O]v are super-real izable says 

s imply tha t  there exist weak embeddings  ~: 796 --+ A/[. and )~: Qo --+ A4,  so tha t  

r = ~ o i0u, e (on the 79 side) and 7r = )~ o iV, o (on the Q side). 

CLAIM 3.34:790 = Qo. 

Proof" Assmne for contradict ion tha t  this is not the case - -  say 790 is a strict 

initial segment  of Q0. Let  7 3 = X(79e), so tha t  73 is a strict initial segment  of 

A/Iv and there is a weak embedding  )C[79e: 79e -+ 73- Let  # = Rest[73]. As 73 is a 

s tr ict  initial segment  of A/Iv we have ~ < u strictly. 

Let  # = a~[73] o ()~F79~) o i0u,~. Then  #: A/" --+ 2~¢1~ is weak and 9 < u. As before 

this contradic ts  the min imal i ty  of  u, assumed in Theorem 3.2. | 



200 A. ANDRETTA, I. NEEMAN AND J. STEEL Isr. J. Math. 

CLAIM 3.35: The embeddings i u and iVo,o are equal. O,O 

Proof'. Assume for contradiction that they are not. Let x E N" be least, with 

respect to g, such that iuo,o(x) ¢ iVo,o(X). Assume for definitiveness that iUo,o(X) <L 

iVo,o(X), where <L is the order of constructibility (in P0 = Q0). Let # = )~ o i u 0,0" 

Then 

Similarly for y E Af which is enumerated before x in ~" we compute 

= ~ ( ~ L ( ~ ) )  

=-(y). 

Thus ~: Af --+ A/I~ is a weak embedding which is to the left of 7r. But this 

contradicts our assumption in Theorem 3.2 that ~r is left most. | 

Finally we reached the conclusion that P0 -- Q0, there are no truncations on 

[0, 0]u and [0, 0]v, and i u = i0v,0 . But this contradicts Corollary 3.31, applied 0,0 
with ~ = / 3  = 0. This final contradiction completes the proof of Theorem 3.2. 

| (Theorem 3.2) 

The reader familiar with [NS99] may note a certain general pattern in our 

argument. Roughly speaking it follows the lines "Comparison plus Dodd-Jensen 

Uniqueness." This implication was noticed by the third author, and it seems 

to hold in many general settings. 
Before closing let us take note of our use of the assumption that T is normal, 

maximal, and non-overlapping in Theorem 3.2. We have certainly throughout 

the argument used the fact that /4 ,  ]2 are sturdy. (This was especially important 

for Claim 3.32.) The sturdiness of /4  and Y traces back to Lemma 3.14 with 

7~ [ ~] = T, and to Lemma 3.9. The argument there requires some assumptions 

on T. It is not enough to assume that  T is sturdy (the problem is in Steps 7 

and 9 of Claim 3.11) but it is enough to assume that T is suitable. The only 

other occurrence of T is in the proof of Claim 3.30. After defining 0 + 1 (and 

similarly ~ + 1) in this proof we argue that i u has critical point equal to or &+l,O 
greater than )~. Our definition of & + 1 makes this argument possible, but only 

with some assumption limiting the way extenders o n /4  may overlap E~. For 
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extenders indexed above 7/the fact t h a t / g  is balanced above ~1 suffices. However 

some additional assumption is needed to cover extenders indexed before ~/ (i.e. 

extenders on T).  Again it is enough to assume that  T is suitable. Thus Theorem 

3.2 continues to hold if "normal, maximal, and non-overlapping" is weakened to 

"suitable." Similarly Corollary 3.3 continues to hold if the restriction of Footnote 

16 is weakened to "suitable." 
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