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1. Introduction

Iterability remains the only obstacle on the way to a general construction of
inner models below superstrong cardinals, and so the only obstacle to the many
equiconsistency results which will follow from such a construction. A more precise
description of what “iterability” means is given by (f) of 2.21, but we shall not
go into this now. It is perhaps worthwhile pointing out one of the many potential
applications of the construction of inner models:

THEOREM 1.1 (Schimmerling—Steel): Suppose PFA, the proper forcing axiom,
holds and there exists a measurable cardinal Q. Assume (1), for all v < Q,
k < w. Then there exists an inner model with a superstrong cardinal.

Theorem 1.1 is really the result of the combined work of several people over
many years. It is perhaps deficient in several respects; the measurable cardinal
should not be necessary, and the consistency strength of PFA is anyway supposed
to be much more than a superstrong cardinal. But most annoying is our inability
to prove (1). There have been several attempts to approximate a proof of (). All
have the form “failure of (f) gives a transitive model for ZFC plus large cardinal
axiom (A),” where the particular large cardinal which (A) stands for has changed
over the years, becoming stronger. Thus if we wish to eliminate the assumption
of () in Theorem 1.1 we may deduce only the weaker of (A) and “there exists
an inner model with a superstrong cardinal.”

This paper presents the latest in the series of strengthenings of (A). In Corollary
3.3 we show that a failure of (}) implies the existence of a non-domestic premouse.
The notion of domestic is stated precisely in Definition 3.1. A non-domestic
premouse gives a model M with a cardinal « so that

e k is a limit of Woodin cardinals in M;

e x is a limit of cardinals strong to x in M; and

e £ is externally measurable.
(We refer the reader to [Kan97, §26] for the definition of strong and Woodin
cardinals. A cardinal T is said to be strong to « just in case that 7 is 7 strong
for all v < x.) This of course is substantially weaker than a superstrong cardinal.
Thus combining Corollary 3.3 with Theorem 1.1 we get

COROLLARY 1.2: Suppose that PFA holds and that there exists a measurable
cardinal. Then there exists a non-domestic premouse.

Some (conceptually) simple modifications of our proof allow substituting for
(A) an axiom slightly stronger than non-domestic (specifically the existence of
premice M with any finite number of cardinals ko9 < -+ < K, such that each &;
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is: strong in M; a limit of Woodin cardinals of M; and a limit of strong cardinals
of M). Yet this too falls far short of an outright proof of (t). How to actually
prove (1) remains one of the greatest mysteries of inner model theory.

This paper divides into two Sections. Section 2 gives a brief account of the K°
construction of [Ste96)], adapted to our context. There are two main differences
there. We follow Jensen’s indexing of extenders, and we use a slightly different
notation to deal with the fine-structural concepts of [Ste96] and [MitSt94]. Sec-
tion 2 also states (f), and present a fundamental iterability theorem (2.28) which
traces back to {Ste96] and [MarSt94]. Theorem 2.28 demonstrates the existence
of maximal branches through iteration trees, but not necessarily cofinal branches.
(t) however requires cofinal branches. In Section 3 we show how to use Theo-
rem 2.28 so as to obtain cofinal branches through the relevant iteration trees.
This argument makes strong use of the smallness assumption that the premouse
considered is domestic. More precisely, Lemma 3.24 demonstrates that iteration
trees on domestic premice have a certain property which we call semilinearity.
This allows viewing the trees as compositions of “better” iteration trees — trees
with unique realizable branches. Uniqueness then allows us to deduce that a
maximal realizable branch must in fact be cofinal.

ACKNOWLEDGEMENT: We thank Ernest Schimmerling and Martin Zeman for
some fine structural help.

2. Preliminaries

Stretching our proof to work for the largest possible large cardinal seems to re-
quire use of Jensen’s indexing method. Jensen, unlike [MitSt94] and [Ste96],
indexes an extender E at the successor of ig(k) (computed in the ultrapower by
E) where s = crit(E). Exact details of this method of indexing can be found in
[Jen97], which unfortunately is unpublished. Our own approach here is a combi-
nation of the indexing of [Jen97] with the fine structure of [MitSt94]. We include
in this Section a description of the basic definitions involved in this combina-
tion, continue with a particular kind of realizability for finite phalanges which we
shall need, and end with the fundamental iterability theorem for such realizable
phalanges. Throughout the Section we indicate how our notions correspond to
those which exist in the literature, both in [Jen97] and in [MitSt94]. This Section
does not contain any proofs, since all results involve only simple modifications to
proofs which exist in the literature. We shall refer the reader to the location of
these proofs, and occasionally remark on the modifications which must be made.
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Definition 2.1: Let M be a transitive structure with a largest cardinal . F is
said to be a whole! extender on M just in case that there exist A, w such that:
1. N is transitive;
2. m: M = N is Iy elementary and cofinal;
3. crit{m) = k; and
4. F is the restriction of 7 to P(k)™.

Given M and a whole extender F on M one can recover a minimal pair
N, 7 which satisfies conditions 1-4 of Definition 2.1. Indeed, given any M such
that P(x)™ = P(k)™ one can form a structure Ulto(M, F) and an embedding
0: M — Ultg(M, F) such that:

1. The restriction of o to P(k)™ is equal to F;

2. o is Iy elementary and cofinal; and

3. Ultp(M, F), o is minimal, in the sense that every element of Ultg{ M, F)

has the form o(f)(&) for some function f € M, f: k<¥ -» M, and some
i€ F(k)<v.
(Ultg(M, F) need not in general be wellfounded. If it is we assume it’s transitive.)
Ulto(M, F) and o are known as the coarse ultrapower of M by F and the
ultrapower embedding respectively. The precise method of the construction
of Ultg(M, F) can be found in [Kan97, §26).
Ih(F), the length of F, is m(k). For A < Ih(F') we let F|A be given by

(FIN(X) = F(X)N A.

C’r denotes the set of A < lh(F) such that F|) is itself a whole extender. There is
an implicit dependence on M here, but in fact using the ultrapower construction
one can see that Cr depends only on F.

Remark 2.2: 1h(F) always belongs to Cr, and is quite often the only element
of Cr. However we should point out that already at the level of sharps one
can construct extenders F such that Cg contains additional elements other than
Ih(F). These examples, at least below a superstrong cardinal, will fail to satisfy
the initial segment condition 2.4(5), see Footnote 7.

Definition 2.3: N = (Ja[A], F) is coherent iff

1 General, non-whole, extenders are structures of the form F|A presented below.
A precise definition can be found in [Jen97, §1]. It is customary also to define
extenders as the directed system of measures derived from F|A. See for example
[Kan97, §26].
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1. Ju[A] is acceptable;?

2. For some & < «, F is a whole extender with domain P(N)J“[A] where
k = crit(F), and & is the largest cardinal in J5[A]; and

3. Jo[A] = Ulto(Js[A], F).3

Definitions 2.1 and 2.3 are taken essentially from [Jen97]. Our next definition,
that of a premouse, is similar to that of [Jen97] except that we view the height
of a premouse not as an ordinal «, but as a pair («, k) where « is an ordinal and
k < w. The main difference between our premice and those of [Jen97] comes in
through condition 4 and we shall elaborate on this below.

Definition 2.4: M = ((Jo[E), €, E, E,), k) is a premouse if it satisfies the
following conditions:

1. a € ON and k < w;

2. Jy [E] is acceptable;

3. (Coherence) E has the form {(v,Z) | v < a A Z € E,}. For each v < q,
E, is either empty or else it is a whole extender* so that

(a) (J,|EIv],E,) is coherent and
(b) dom(E,) includes all subsets of crit(E,) in J,[E|v] (in other words
the ordinal & of Definition 2.3 is the successor of « in J,[E[ v]);

4. For (B,1) <vex (a, k) (strictly), M[(8,1) = ((Js|ET B, €, E B, Eg), 1) is a
premouse, is sound, and has a solid standard parameter (both concepts are
explained below);

5. (Initial segment condition) In the case that k = 0, if E, # 0, A € Cg,, and
A < Ih(E,) (strictly) then E4|A € M.

The elements of M are the elements of J,[E], but M contains additional infor-
mation which includes k and the predicates €, E and E,. We shall use Ja,k[E'] to
denote the structure ((J,[E], €, E), k) and write (Jak[E), Ey) for the premouse
M. When we wish to draw attention to k we shall refer to M as a k-premouse.
We shall refer to o as (M) and to k as k(M).

2 A structure is acceptable if it satisfies a strong form of the GCH, to the effect that
every subset of an ordinal -y in the structure is constructed before the successor
of v in the structure.

3 Equivalently in this situation, taking M = Js[A] and N = J,[A] would satisfy
the conditions of Definition 2.1.

4 We alternate between thinking of whole extenders as functions and as predicates.
The predicate E, is simply the graph of the function E,. Thus Z € E, iff
Z = {X,Y) for some X,Y such that E,(X) =Y.
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Remark 2.5: [MitSt94] includes an additional condition in the definition of a
premouse, saying that if E, # @ then E{,‘/ = () where N = Ulty(M, E,) and EN
is the image of E under the ultrapower embedding. In the context of Jensen’s
indexing this extra condition follows provably from the others.

Exclusion 2.6: To avoid technical complications related to the preservation of
the initial segment condition, 2.4(5), WE LIMIT OUR DISCUSSION THROUGHOQUT
THE PAPER TO STRUCTURES M SUCH THAT M ¢ THERE DO NOT EXIST
SUPERSTRONG CARDINALS.” We shall say more on the preservation of 2.4(5) in
Remark 2.15 below. For the time being let us note that under our exclusion,
2.4(5) is equivalent to: “In the case that k& = 0, if E, # 0 then Cg_ does not
contain elements other than Ih(E,).”

[Jen97] defines the notion of X* elementarity which is then used throughout
the notes, instead of the elementarity notions of [MitSt94]. In this paper we shall
adopt an approach to elementarity which is close to that of [MitSt94] and [Ste96],
although the end result, at least for the premice we shall work with here, is the
same as Jensen’s ¥*. Roughly speaking, we shall follow [MitSt94] except that
the index “k” which denotes the degree of elementarity is transferred, from the
embedding to the premouse on which it operates. This movement was suggested
to the authors by Sy Friedman. It does not affect the mathematical content of
our statements; however the notation is simplified substantially. We have already
taken the first step of this movement in our definition of a premouse. Next we
explain how this movement affects the fine structure of our premice, and the
notion of elementarity which it generates.

Our definitions below, and indeed Definition 2.4, are carried inductively on the
lexicographic order for pairs {a, k). For each premouse we define below its true
height, 9(M); its true domain, D(M); its projectum, p(M); its standard
parameter, p(M); its reduct, R(M); and its core, €(M). We then say what
it means for M to be sound, and (neglect to) say what solidity is. Once these
concepts are defined for premice of height {«, k) we can make sense of a premouse
of height (o, k + 1) — particularly of condition 4 of Definition 2.4.

During the induction we shall make use of the following two assumptions:

(U)m The standard parameter, p(M), of M is universal.
(S)e(my  The standard parameter, p(€(M)), of €(M) is solid.
Although we indicate below how we use (U)a¢ and (S)e(aqy (both are used to

prove the preservation of the standard parameter under embeddings), it is not
within the scope of this paper to define solidity and universality. We refer the
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reader to [MitSt94, Definition 2.7.4] and [MitSt94, Definition 2.7.5], as well as
[MitSt94, §8]. Solidity and universality for k-premice correspond to “k + 1 solid-
ity” and “k + 1 universality” in the terminology of [MitSt94].

Before we begin the induction, let us briefly review the fundamental definitions
of fine structure, which trace back to [Jen72]. Additional details can be found
in [Jen72] or the forthcoming [Zem]. Suppose S = (S, {A;}ics) is an acceptable
structure with predicates {A;};cs. The X1 projectum of S, denoted p;(S), is
the least ordinal p such that for some ¢ € SN ON<* and some ¥; formula ¢,
{€<p | SEE g} €S. pi(S) may be ONNS or it may be smaller. The 3,
standard parameter of S, denoted p;(S), is the least ¢ (wrt the lexicographic
order on decreasing sequences of ordinals) which witnesses the above. The X3
reduct of S is the structure R = (R, {B;}ic1, B*) where: R = SN H(p:1(S))%;
B; = A; N R; and B* is an additional predicate which codes the ¥; theory of
p1(S) U {p1(S)} in 8. (More precisely, (i,&) € B* just in case that i < w,
& € p1(8)<¥, and S F ¢i[@, p1(S)]. {¥i}icw here is a recursive enumeration of
all ¥, formulae of §.) Finally, the X; core of S is the transitive collapse of the
%1 Skolem hull in S of p1(S) U{p1(8)}. Of course making this precise requires a
definition of £; Skolem terms in &, but we shall not go into this. S is 3; sound
just in case that the ¥; Skolem hull of p1(8) U {p1(S)} in S includes all of S.

Let us now return to the induction. We start with the case that M is a 0-
premouse. In this case 9(M) is w - @ = ONNM; D(M) = M; p(M) is the &;
projectum of M: p(M) is the ¥; standard parameter of M; R(M) is the I,
reduct of M; and €(M) is its £; core. We say that M is sound just in case
that M is ¥; sound (and in particular €(M) = M). Observe that (M) codes
the Skolem hull which collapses to €(M). Tt follows that €(AM) can be recovered
from R(M).

Remark 2.7: One can check that p(€(M)) = p(M) and that the two premice
agree up to p(M). The universality assumption (U) ¢ implies that in fact €(M)
and M have the same subsets of p(M). From this it follows that p(€(M)) is the
collapsed image of p(M), and so €(M) is sound. €(M) is then the unique sound
premouse whose reduct equals R(M).

€(M) is still a O-premouse but since it is sound and —by (S)g(a)— has a solid
standard parameter, it can be extended to a l-premouse. We call this a trivial
extension: Given a sound k-premouse M = (Ja,k[E], E,) with a solid standard
parameter, the trivial extension of M is the k + 1-premouse (Jy k41[E], Ea)-
The requirements of soundness and solidity are needed to establish 2.4(4) for the
trivial extension.
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Let us next consider the case when M = (Ja,kH[E'], E,) is a k + 1-premouse.
Our notions now will correspond to the appropriate “k 4+ 2 notions” in the ter-
minology of [MitSt94]. Let M*™ denote the k-premouse (Ja,k[E'], E,), which we
call the immediate truncation of M. We define 9(M) to be p(M¥™); and
D(M) = R(M'™). D(M) is then a structure whose ordinal height is 9(M), and
M is the unique premouse whose true domain equals D(M).

p(M) is defined to be the X; projectum of D(M); p(M) is the X; standard
parameter of D(M); R(M) is the &; reduct of D(M). Let D be the ¥ core
of D(M). There is a unique k + 1-premouse whose true domain equals D. Let
€(M) be this premouse.

Remark 2.8: Much is hiding in our claim that there is a k 4+ 1-premouse whose
true domain equals D. To verify this we must capture the properties which
make M into a k + 1-premouse as ¥; statements over D(M), and reflect these
statements to D. Some of the properties are easy to capture, others are more
difficult. Among the more difficult ones is the solidity of p(M®™). Capturing
this property seemingly requires a 3 statement over ®(M). [MitSt94] avoids the
problem by putting witnesses for this ¥y statement as additional parameters in
the Skolem hull which defines D, see [MitSt94, pp. 23-24]. In fact the solidity of
p(M*™) is equivalent to a ¥; statement over (M), and so additional parameters
are not needed. We refer the reader to the discussion of generalized witnesses in
[Jen97, §7 pp. 1-5]. (The existence of generalized witnesses is £; over D(M).)

We say that M is sound just in case that D(M) is £y sound (in particular
D = D(M) and €(M) = M). Observe that R(M) codes the Skolem hull which
collapses to D. Thus knowledge of R(M) suffices to determine €(M). Remark 2.7
applies and assuming (U)o it follows that €(AM) is the unique sound premouse
whose reduct equals (M).

Finally, in the case of an w-premouse M = (Jowu[E], E4): By condition 4 of
Definition 2.4 we know that each of (Ju k[E], Ea) is a sound premouse. Let us
refer to them as Mg, My,.... Our definitions for these premice are such that
I(Mop) > p(Mg) = $(My) > p(My) = 9(Myz) > ---. Since there are no infinite
(strictly) descending chains of ordinals we see that for all sufficiently large k < w,
HMy) = p(My) = I(Mps1). We let p(M) = 9(M) be this eventual value. M
by default is sound, and €¢(M) = M = €(M}). Again for all sufficiently large
k < w, the reducts R(My) all have the same elements (though not the same
predicates; 8(My1) has one additional predicate on top of the predicates of
R(M;)). We let D(M) = R(M) have as its elements the elements of R(Mjy)
for some (all) sufficiently large k < w, and as its (infinitely many) predicates
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the accumulation of the predicates of M(My), k < w sufficiently large. We set
p(M) = §. p(M) by default is solid and universal.

Remark 2.9: Each element of M is coded as a term over D(M). We shall not
make this precise; readers who have some familiarity with fine structure of any
fashion may interpret this in their favorite way. Terms can always be viewed as
finite sequences of ordinals. For ¢t € D(M) we use "t" to denote the element of
M coded by ¢, if ¢ has the form of a term. ¢ — "¢ is then a partial map from
HM)<“ onto M.

Let M = (Jui[E], Eo) and N = (T3 [F], F3) be two premice. An embedding
m: M — N is said to be elementary just in case that conditions 1-4 below are
satisfied.

1. k=1

2. crit(r) < $(M);®
Let 7 be the restriction of 7 to D(M).

3. 7 is a £; elementary embedding of D(M) into D(N). (Note that formulae

here may make reference to the additional predicates of D(M));

4. For t € 9(M)<¥ a term,

m(Ct7) =& ()7

where the RHS is of course interpreted in N.
In the situation described by condition 4 above we say that « is induced by 7.
We say that 7 is precise if in addition to 1-4 the following condition is satisfied:

5. crit(m) > p(M), p(N) = p(M), and p(N) = m(p(M)).

The importance of precise embeddings has to do with Remarks 2.11, 2.18, and
particularly Lemma, 2.25(b}. The reader who survives to the end of Section 3 will
observe that Lemma 2.25(b) is essential to the proof of Claim 3.32. This use of
Lemma, 2.25 is typical of its general use in inner model theory.

Remark 2.10: Almost by definition €(M) embeds elementarily into M. The
embedding is induced by the map 7 which embeds the ¥; core of D(M) into
D(M). We call this elementary embedding the anti-core embedding. Its critical
point of course is at least p(M). Assuming (U} aq the anti-core embedding is in
fact precise.

5 If # = ¢d we view this condition as vacuous. Similarly in condition 5 below.
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Remark 2.11: If m: M — N is precise and M is sound, then €(N) = M and 7
is in fact the anti-core embedding.

FacTt 2.12: The composition of two elementary embeddings is elementary.
Indeed, any transfinite composition of elementary embeddings is elementary.

P = (J,:[H], H,) is said to be an initial segment of M just in case that
(7,3) <vex (&, k), H = E| v, and H, = E,. P is a strict initial segment of M
if strict inequality holds (even if v = a).

Fact 2.13: Let m: M — N be elementary. Let M be an initial segment of M
and let N = n(M) (where this is understood to be N if M = M, and an n-th
immediate truncation of N' if M is an n-th immediate truncation of M). Then
[ M: M — N is elementary.

We say that m: M — N is a weak embedding if it satisfies the conditions of
elementarity with 3 replaced by the following weaker condition:

w3. 7: D(M) = D(N) is Ep elementary and cardinal preserving.®

Any elementary embedding is also weak. Facts 2.12 and 2.13 continue to hold
with elementary replaced by weak. Another quality of weak embeddings, crucial
to the proof of Theorem 2.28, is given in Remark 2.14 below. As a rough guide to
the future distinction between elementary and weak embeddings, let us say that
embeddings given by iteration trees are elementary, while realization embeddings
(see 2.27) are weak. The need for this distinction is explained in Remark 2.31.

Remark 2.14: Suppose m: M — N is weak. Fix k < A € M. Suppose that there
exists a strict initial segment P of N such that a(P) > n(A) and p(P) < n(k).
Let N~ be the least such. Then there exists a strict initial segment Q of M such
that a{Q) > A and p(Q) < k. Let M~ be the least such. Then 7#(M™) = N~
(As always m(M™) is understood to be an n-th immediate truncation of N if
M~ is an n-th immediate truncation of M.)

An extender F' with critical point x is said to be an extender over a premouse
M= (Ja,k[ﬁ],Ea) just in case that:

F1. The domain of F equals P(I‘G)M;
F2. K < 9(M); and
F3. If k =0 and E, # 0 then & < Ih(E,) (strictly).

6 [MitSt94, 5.1.7 ff.] makes the additional requirement that 7 be £, elementary on
a cofinal subset of D(M). This gives a class of embeddings which is not closed
under compositions, creating problems later on, particularly in 3.33-3.35.
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The (fine) ultrapower of M by F is then defined essentially using terms. One
way to state this is the following: Let D = Ulty(D (M), F) be the coarse ul-
trapower of D(M) by F, and let 7 be the coarse ultrapower embedding. De-
fine N' = Ult(M, F) to be the term structure recovered from D and define the
(fine) ultrapower embedding 7: M — A to be the embedding induced by 7.
Ult(M, F) needn't always be wellfounded. If Ult(M, F) is wellfounded then we
assume it’s transitive. It is easy in this case to check that D(Ult(M, F)) = D
and that 7 is elementary.

Conditions F1-F3 are all necessary for this to make sense. F1 and F2 allow
forming the coarse ultrapower of D(M). F3 is used to make sure that A continues
to satisfy the initial segment condition.” If condition F2 fails then F' cannot be
applied to M, even if crit(F) < MNON and the domain of F' includes precisely all
subsets in M of its critical point. However it is possible in this case to (trivially)
truncate M to some k'-premouse M’ = (T, y'[E], Eq) with a true height large
enough so that F2 holds for M’. This process of trivial truncation corresponds
to the drops in degree of [MitSt94]. If condition F3 fails then again we don’t
apply F to M. Generally speaking when this happens we end up applying F' to
a different premouse altogether, usually the next premouse on the iteration tree
in question.

Remark 2.15: Using the equivalence of Exclusion 2.6 one can verify that (assum-
ing Exclusion 2.6) the initial segment condition is preserved under Skolem hulls
and under ultrapowers by extenders which satisfy F1-F3. Without Exclusion 2.6
preserving 2.4(5), particularly under Skolem hulls, becomes more complicated
(see [Jen98b] for details). Let us point out already here that the initial segment
condition, 2.4(5), is essential later on. Without it Fact 3.28 below may fail. Fact
3.28 in turn is crucial to one of the key arguments of inner model theory, the
demonstration that comparisons terminate.

For a structure S, we use X1(S) to denote the collection of subsets of S which
are 3 definable over S with parameters. More precisely, X € 2;(8) just in case
that there exist @ € S<“ and a ¥; formula ¢ so that z € X < S k= ¢[z,d).

Definition 2.16: Suppose F is an extender over a premouse M. Let & = crit(F)
and let N = Ult(M, F). F is related to M just in case that

7 In this respect F3 is a necessary assumption: If crit(F) = lh(E,) one may still
attempt to form the ultrapower N' = Ult(M, F) and ultrapower embedding 7.
Letting E* = 7n(E,) be the final extender predicate of A, one can see easily that
Ih(Ey) € Cg+. In particular Cg+ contains additional elements other than 1h(E*),
and may fail to satisfy the initial segment condition.
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1. P(k)NN C P(k) N M; and
2. P(s) NZ(DWN)) C P(k) N L1 (D(M)).

Note that the converse inclusions to 1 and 2 hold automatically. Thus F is related
to M iff equality holds in both. We shall use these equalities later in conjunction
with Remark 2.18 below.

FacT 2.17: Suppose M and P = <Jﬁ’[[ﬁ],Fﬁ> are premice, fix n < f, and
suppose Fy, # 0. Let k = crit(Fy) and let 7 be the successor of & in P || (n,0).
Assume that (a) F, is an extender over M; (b) M and P || (n,0) agree up to 7;
and (c) P(t)NZ1(P || (n,0)) C T1(D(M)).2 Then F, is related to M.

Fact 2.17 is our main tool for establishing that some extenders are related to
M. Its proof is a direct computation using our definitions of Ult and Ulty. See
[Jen97, §1 Lemma 8] or the final part in the proof of [MitSt94, Lemma 4.5].

Remark 2.18: Suppose m: M — N is elementary. Let x = crit(r). Suppose
(a) P(k) N M = P(s) N N; (b) P(s) NE1(D(M)) = P(k) N Z1(D(N)); and (c)
k > p(M). Then (S)a = [(S)» and 7 is precise].

Remark 2.18 is a restatement to our context of [Jen97, §7 Lemma 2.1]. Conditions
a—c by themselves suffice to establish that p(N) = p(M). Solidity is used to make
the additional claim that p(N) = w(p(M)). We will only use Remark 2.18 in the
special case where 7 is a composition of ultrapower embeddings. For the proof
in this special case see [MitSt94, Lemmas 4.6, 4.7].

This ends our introduction to fine structure. Readers familiar with Jensen'’s
¥* theory should take comfort in the fact that our elementary embeddings are
in practice almost always L* elementary, and our precise embeddings are ¥* ele-
mentary. Really the difference between our approach here and that of [Jen97] is
in the level of generality. Our premice satisfy strong demands of soundness. The
fine structure of [Jen97] applies in much more general settings to structures which
do not satisfy these soundness demands and therefore are not, by our definition,
premice. Readers familiar with [MitSt94] and [Ste96] should note that our ap-
proach here differs only linguistically. For example, a normal, non-overlapping,
maximal iteration tree on a k-premouse M = (Ja,k[ﬁ], E,) is simply a normal,
non-overlapping, k-maximal iteration tree on (Jy [E], E,) in the terminology of
[MitSt94].

8 This is similar to but slightly weaker than the definitions of close extenders in
[MitSt94, Definition 4.4.1] and ¥ amenable extenders in [Jen97, §1 p. 12].
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[Ste96] and [Jen97, §11] both include a description of the construction of a
model known as K¢. The two accounts differ in the way they index extenders
and in their concepts of elementary embeddings. We include below a rough
description of this construction, adapted to our own context: Our indexing of
extenders follows [Jen97], while our concept of elementarity is closer to that of
[Ste96).

Fix throughout a cardinal 2. We shall later assume that €2 is measurable,
but for the time being this is not necessary. We define a sequence of premice,
(Mug | v <,k < w). These premice will “converge” to a model K¢ = Mgq.
For each v and k, M, ; will be a k-premouse, of height some a(v, k), and with
predicates E’“”k,E”’k. We abbreviate this by saying that M, ; has the form
(Tau,k) k[ EVF), BVF).

For limit v, define M., to be the liminf of the premice My, for 7 < v.
M, then has the form (Ja(<y),0[ﬁ<”],(b) where E<” contains extenders ESY
for v < a(<v). Each proper initial segment of M, is an initial segment of
M;,, for all sufficiently large ¥ < v; and M, is the longest premouse with this
property. The fact that this is well defined is explained further in Remark 2.19.

Most important is the definition of M, ¢ when v is a limit ordinal. This is
divided into two cases.

CASE la: If there exists a unique extender F so that (Ja(<,,),0[E'<"],F )is a
premouse and is furthermore certifiable (see Definition 2.20), then set M, o =
(Ta(<v) o[E<V], F) for this F.

CASE 1b; If there are extenders F) # F3 so that both (ja(<,,),0[]§<"], F1) and
(Ja(<,,)y0[Ea<“],F2) are certifiable, then pick your favorite such Fy, Fy and set
My = (.]a(<,,),0[E’<"],F1,F2). If this happens the construction ends at v,0,
and M, o is a pre-bicephalus rather than a premouse (see [MitSt94, Definition
9.1.1] or [Jen97, §6]).° Given enough iterability it can be shown (Remark 3.4)
that Case 1b in fact never occurs.

CasE 2:  Otherwise, set M, g = (Ja(@),o[E“’],(I)).

Having defined M, ; we let M, ;. be the trivial extension of €(M,, ). Ob-
serve that then 9(M, k) > p(M, i) = 9(M, k11). It follows that for all suffi-
ciently large k¥ < w we have 9(M,, ) = p(M, ) and hence trivially €(M, ;) =
M, . Thus a(v, k), E”*’“, and E** are constant for all sufficiently large k. We

9 Bicephali are slightly simpler in the context of Jensen’s indexing, since there is
no need to distinguish types.
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let M, = (Ta(wk)w [E”’k], E¥*) for some (any) k < w large enough to stabilize
these objects.

Remark 2.19: Using Remark 2.7, M, 41 and M, . agree up to the successor
of p(M, 1) in M, k. Inductively one can now verify (in the case of limit v) that
if K < p(Mp,,) for all sufficiently large # < v, then the premice M;,|(xt,0)
(where st is computed inside My ) are increasing (in the initial segment order)
as 7 — v, for 7 large enough. Their common values up to their k*-s are then put
as initial segments of M, and all initial segments of M, are of this form.

In the successor case we simply add one more level of constructibility. Thus
Myy10= (ja(.,,w)+1,0[E_""+1’0],(?)) where Ev+10 = E»w " Ev#_ The construction
starts with the premouse Mj o = (J1,0(0], ).

Definition 2.20: Let M = (JaolE], F) be a premouse such that F' # 0. Let
k = crit(F). (N, G) is a certificate for M iff

1. N is a transitive ZFC™ model and V. € N;

2. G is an extender on N with critical point k. Note that G need not measure

all subsets of s in V, but only the ones in N;

3. Let N = Ult(V,G). Then Vyy;, C N, where A = F(k);

4. F(X)=G(X)NnAfor X € P(k)NNNM.
M is certifiable iff (in V) for every A C & there exists a certificate (N, G) such
that A € N.

Definition 2.20 is taken from [Jen97, §11]. Note that condition 4 above is
stronger than the parallel condition, Definition 1.1(b), of [Ste96]. [Ste96] only
requires F(X)Nv = G(X)Nv where v is the supremum of generators of F. This
strengthening is essential to handling premice indexed according to Jensen.

During the construction we have made constant use of the assumptions (U)
and (S). To be more precise, following stage (v, k) we appeal to (U) a4, to secure
the soundness of €(M,, ;) (see Remark 2.7), and then appeal to (S)e(am, ) t0
secure solidity, so that we may take the trivial extension of €(M, ). We again
use (U)pm, , in Remark 2.19. For k = 0 we assumed further that Case 1b didn’t
occur (—1b), k, so that we don’t have to end the construction at a stage before 2.
Officially the construction of K¢ is an induction during which we prove (U)a,
(S)e(m, > and (—=1b), once M, i has been constructed. A substantial step in
this direction is given by the following Theorem of Mitchell-Steel:

THEOREM 2.21: Assume M, has been constructed, and the following state-
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ment holds:

(Dvk All countable elementary substructures M of M, are wy + 1
iterable (for normal, maximal, non-overlapping iteration trees,
see below). Moreover, for any given enumeration € of M there
exists an iteration strategy which has the weak Dodd-Jensen
property relative to €.

Then (U) s, ., (S)e(mm,, ), and (=1b), x are true.

The reader may consult [NS99] for an explanation of the weak Dodd—Jensen
property and some remarks on the proof of Theorem 2.21, which traces back
to [MitSt94, §8]. Let us remind the reader that an iteration tree is said to be
normal if the indices of extenders it uses are increasing. It is non-overlapping
if extenders are always applied to the earliest possible model. An iteration tree is
maximal if extenders are always applied to the largest possible initial segment.
More precisely, if ¢ is the <7 predecessor of ¢+1 then EZ is applied to some N:-H
which is an initial segment of Ng— . In the case of a maximal tree one requires
that N7, , be the largest initial segment over which E7 is an extender. Thus
NZy1 is either equal to N7 or else p(N,;) < crit(ET)'® and there is a subset of
crit(ET), definable over N, |, which is not measured by EJ.

Theorem 2.21 reduces (U, S, -1b) to (1) but unfortunately no general proof
of (}) is known. Much of the current research in inner model theory attempts
to obtain increasingly more general proofs of () and our paper is another step
along this line. We shall prove ultimately that (1), is true assuming that M,
is domestic. As is usual with iterability proofs, our proof relies heavily on a
fundamental iterability theorem which produces maximal branches through iter-
ation trees. Several concepts are needed before we can formulate this theorem
precisely. These concepts (resurrections, easy phalanges, sturdy iteration trees,
and realizability) are defined below, and are followed by the fundamental iterabil-
ity theorem (2.28). This theorem is essentially taken from [Ste96]. [Ste96] relies
partly on the iterability proof of [MitSt94] which in turn draws on the results of
[MarSt94].

Through the construction we define resurrections which trace initial segments
of our current stage back to the stage where they appeared in the construction.
The resurrection at stage (v, k) is a pair Res, k, 0, x. Both are functions which
are defined on all initial segments of M, ;. For any such initial segment N,

10 So that E7 is no longer an extender over the trivial extension of N, because
of F2.
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Res, 1[N is a stage (n,1) <pex (1, k), and o, £[N] is an elementary embedding
of NV into My,,.

The resurrection is defined inductively over the lexicographic order for pairs
(v, k). Let us start with the case of (v,0) for limit ». If A is a strict initial
segment of M,, o we let Res,, o[N] and o, o[N] be the eventual values of Resp ,[NV]
and 05 ,[N] as # — v. (That this makes sense follows from our definition of
the resurrection in the successor cases, particularly case B.) If N = M, ¢ then
Res, o[N] = (v,0) and g, o[N] is the identity embedding.

Next, let us define Res, x41 and 0, ;41 assuming that these are defined for
(v, k). We distinguish three cases:

A. If N = M, gy1: we let Res, p41[N] = (v,k + 1) and let g, k41[N] be the

identity embedding.

B. If NV is an initial segment of M, k.1, cut below the successor of p(M, k)
in M, 5: By Remark 2.19, M, 1, and M, i agree up to this successor,
so that A is an initial segment of M, . We let Res, x11[N] = Res, x[NV]
and o, ;41 [N] = o,k [N].

C. Otherwise: Since case A fails, AV is an initial segment of the immediate trun-
cation of M, x41, which by definition is €(M,, ). Let m: €(M, 1) & M, &
be the anti-core embedding. Let N' = n(N). By Fact 2.13, 7| N: N — N is
elementary. N is an initial segment of M, and so Res,,,k[j\?'] and a,,,k[/{/']
are defined. Let Res, x41[N] = Res,,,k[/\ﬂ and let o, g1 [N] = auyk[j(/] om.
This last definition produces an elementary embedding by Fact 2.12.

In the case of the stage (v,w): If N' = M, we let Res,,N] = (v,w) and
let 0,,,[NV] be the identity embedding. Otherwise: Our construction ensures the
existence of j large enough that A is an initial segment of M, ; and p(M, ) =
I(M, ) for all k > j. We let Res, o[N] = Res, ;[N] and 0, ,[N] = g, ;[N] for
some/any such j. (It doesn’t matter which of these j we pick; note that by choice
of j, k > j = the anti-core embedding from M,, ;41 into M, is the identity.)

Finally we must consider the stage (v + 1,0). Again if N' = M, 10 we
let Resy4+10[N] = (v + 1,0) and 0,41 0[N] be the identity embedding. Oth-
erwise, A is an initial segment of M, ,, and we let Res,11,0[N] = Res, ,[N] and

Uu+1,0[~'\[] = Opw [N]

In the interest of saving ink, we shall from now on use ¥ (and occasionally 7)
to range not over ordinals but over pairs (v, 1) of ordinals such that vy < w.
Thus the stages in the construction of K¢ will be denoted as M,. By n < v we
shall mean (o, 71) <Lex (Vo,v1)-
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Definition 2.22: An easy phalanx (of length n + 1) is a finite sequence of
premice {(N; | i < n) such that the following conditions hold:

1. For ¢ < n, €(Njy1) is a strict initial segment of Aj;

2. For i < j < mn, p(Ni41) < p(N;41); and

3. For ¢ < n, p(N;31) is solid.

We shall use N; to denote €(N;,1), which by 1 is an initial segment of A;.

For notational convenience we shall often index the premice of an easy phalanx
by transfinite ordinals rather than natural numbers. Thus we shall talk of the
easy phalanx consisting of N for { € I, where I is some finite set of ordinals.
We continue to require that the core of each premouse in the phalanx is an initial
segment of its predecessor in the phalanx, etc.

Given an easy phalanx, set A; = p(N;41) = p(N;). The A;-s are then increasing,
and since AV; embeds into N;41 via an embedding whose critical point is at least A;
one sees that NV; and V41 agree up to \;. Thus the pair of sequences (N; | i < n),
(A } i < n) is a phalanx in the usual sense (see for example [Ste96, Definition
6.5]). We shall refer to this phalanx as N Tteration trees on easy phalanges are
formed as always, using the A;-s as exchange ordinals: The first extender used,
ET, must have length greater than \,_1; and if E7 — the e-th extender used —
has critical point smaller than ); then the <7 predecessor of ¢ + 1 is allowed to
be i. (Observe in this case that N7 and N; have the same subsets of crit(E] ).
Of course N; may have more subsets of crit(E ), in which case E7 is applied to
a strict initial segment, of N;.) We shall refer to the premice of N and to their
indices as roots of 7, and will say for example that m is the root of £ if m <n
and the branch of 7 which leads to Ng starts with m. We shall follow similar
terminology when indexing the premice of N by transfinite ordinals. Those (-s
so that AV; is a premouse of N are referred to as roots of 7. Other premice of
T are indexed starting from & + 1, where £ is the largest root. We shall refer to
the smallest root of 7 as the primordial root, denoted pr.

Let 7 be an iteration tree on an easy phalanx N of length n 4+ 1. Let b be &
branch of 7, either leading to a premouse on 7 or else leading to a wellfounded
direct limit which we refer to as the last premouse of b. Consider some e +1 € b
and let ¢ € b be the <7 predecessor of € + 1. N7, is an ultrapower either of
NCT , or else of N¥,; which is a strict initial segment of NCT . If the latter is true
we say that  is a truncation point of b.1* For notational convenience we shall

11 The corresponding terminology in [MitSt94] is drops. Note that [MitSt94] would
say the drop occurs at € + 1, rather than ¢. [MitSt94] also distinguishes be-
tween proper drops, where a(N7,1) < a(N¢), and drops in degree, where
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denote N, | by N, ¢ When ( is a truncation point of b and € + 1 is the successor
of ¢ in b. This is an abuse of notation, since NC" depends on the branch b to
determine e. However b will generally be clear from the context. At any rate N, ¢
is then a strict initial segment of V7. For uniformity we define A%, and NE
also if ¢ is not a truncation point. In this case N, and N equal . Thus
if ¢ <7 ¢ and there are no truncations on the segment (¢,£)s then 7 defines an
embedding iZE: N, ¢ N, §T~ We would like under certain circumstances to argue
that this embedding is precise (Lemma 2.25). We shall do this by securing the
conditions of Remark 2.18.

Definition 2.23: (7 an iteration tree on an easy phalanx N.) v < Ih(7) is
simple if (a) the root of v is primordial; and (b) there are no truncations on the
branch [pry,v)7. Otherwise v is non-simple.

To motivate Definition 2.23, let us point out that our easy phalanges will always
be induced by some branch through a past iteration tree. (Definition 2.26 makes
this precise.) The models of N, except for Ny, will correspond to failures of
2.23(b) on this past iteration tree. Thus in defining simplicity it is natural to
demand both 2.23(a) and 2.23(b).

Definition 2.24: An iteration tree 7 on an easy phalanx Nis sturdy if:
1. 7T is normal;
2. T is maximal;
3. For e +1 < Ib(7) and v the immediate <7 predecessor of ¢ + 1, E7 is
related to N = N y;
4. (e, as above) if 7 is non-simple then crit(E]) > p(NZ,,).

Note that if v is a truncation point on the branch to € + 1 then crit(E,) >
p(N;) follows by the maximality of 7. Thus 2.24(4) can only place an additional
constraint when -~y is not a truncation point. The additional constraint in this
case is simply crit(E) > p(M.]).

Sturdiness is exactly what we need to prove Lemma 2.25 below. This Lemma
is needed later; case (b) in particular is essential for Claim 3.32. We therefore
restrict our attention throughout this paper to sturdy iteration trees. The trees
we really care about (for the sake of Theorem 2.21) are normal, maximal, and
non-overlapping. We shall verify later (Claim 3.8 and Lemma 3.9) that such trees
are sturdy.

a(N1) = aWNVe) and k(N ) < k(N¢). Our terminology does not make this
distinction.
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LEMMA 2.25: Suppose T is a sturdy iteration tree on N. Let ¢ <7 ¢ be such
that there are no truncations on the segment (¢, €)r. Assume further that either
(a) ¢ is non-simple; or (b) { is a truncation point on the branch leading to £.
Then the embedding i&: N = .N'Z— is precise, and p(N’Z ) Is solid. In case
(b) moreover Q(N'g) =N and 'izjg is exactly equal to the anti-core embedding.

Proof (Sketch): Precision and solidity follows from Remark 2.18, by induction
on ¢. Conditions (a,b) of Remark 2.18 are given automatically by 2.24(3). To
apply 2.18 one has to verify further that all extenders used on (¢, £]7 have critical
points at least p(V, ¢ ), and that p(N, ¢ ) is solid. If ¢ is a non-primordial root then
solidity is given by condition 3 of Definition 2.22. If { is a truncation point then
solidity is given by 2.4(4) since NC_ is a strict initial segment of a premouse. In
all other cases solidity follows by induction. Also by induction one verifies that
pNT) = p(N() for v in (¢,£)7. This together with 2.24(2,4) allows verifying
that all extender used in (¢, €]y have critical point at least p(/\f{), as needed. In
case (b) we know also that NC_ is sound, since it is a strict initial segment of a
premouse. Applying Remark 2.11 then completes the proof of 2.25. |

Lemma, 2.25 is perhaps the most important application of the methods of fine
structure to future results in this paper. It allows us under certain circumstances
to pinpoint precisely an iteration tree embedding.

Definition 2.26: (T a sturdy iteration on an easy phalanx N, babranch through
T either leading to a premouse of T or to a wellfounded direct limit.) The easy
phalanx induced by the branch b consists of the premice Ny, -+, Npm_1,
where m is the root of b; followed in increasing order by the premice N, for
m < ¢ < lh(b) a truncation point of b; and ending with the last premouse of b.
We denote this phalanx by NE,

The reader may note that the premice of N? are indexed by (possibly) trans-
finite ordinals. A'® is indeed an easy phalanx. The conditions of Definition 2.22
can be verified using (among other things) Lemma 2.25.

Definition 2.27: A realization of an easy phalanx N consists of a lexicograph-
ically decreasing sequence of stages (v; | i < n) together with embeddings
(m; | © < n) so that the following conditions hold:

1. For i <n, mj: Nj - M,, is a weak embedding;

2. For i < n, v;y1 = Res,, [mi(N;)];*? and

12 We remind the reader that N; = €(N;41) is a strict initial segment of ;.
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3. For i < n, the following diagram commutes:

oy, [m (M)

My

LB M—ﬁT 7ri+1T

a.c.
N; Nij1

a.c. denotes the anti-core embedding and V illustrates the fact that m;(AN;)
is a strict initial segment of M, .
We shall refer to such a realization as 77, 7.

THEOREM 2.28: Let N be an easy phalanx, all of whose premice are countable,
and let 7,# be a realization of N. (We implicitly assume that M, has been
constructed.) Let T be a sturdy iteration tree of countable length on N.
Then there exists a mazimal branch b through T and a realization i?®, #° of the
easy phalanx N which satisfies the following:
1. #m = #m and 7| m = U] m, where m is the root of b; and
2. Let ¢ be the first truncation point of b, or if there aren’t any let { stand
for b. (In either case NI is the first premouse of N following Np_1.13)
Note that the iteration tree T defines an elementary embedding iz;,g' We
require that 1/2 = vy, and that the following diagram commutes:

m

b
Y
Tm
T

Nop —5> NT

Let us remark that strong forms of commutativity hold also between any trun-
cation points of b, not just between m and the first truncation point. This com-
mutativity follows from our requirements in Definition 2.27 and from Lemma,
2.25 (which relies on the assumption that 7 is sturdy). A version of Theorem
2.28 can be stated for trees which are not sturdy. In this case one has to make
allowance for the fact that the embeddings between truncation points of 7 are
not always anti-core embeddings, and consider phalanges where the embeddings
of N; into Ny, are not necessarily anti-core embeddings. This has mainly the

13 This may be N, if m is a truncation point of b.
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effect of complicating notation. Since anyway we only care about sturdy trees,
we shall not go into this greater generality.

Definition 2.29: In the situation described by conditions 1,2 of Theorem 2.28

we say that 7, 7 and 7%, #°

commute. We refer to 7[m + 1 as the meet of the
two realizations. (This is a slight abuse of notation since m depends also on b.)
A branch b for which there exist #® and #® which commute with 7,7 is called

super-realizable (wrt 7, 7).

Note that by 2.28(1,2), the meet 7| m + 1 is an initial segment of ¥®: v; = v? for
i < m and v, is equal to Vé’ where ( is either the first truncation on b, or the
final model of b if there are no truncations.

Remark 2.30: Theorem 2.28 applies also to trees of length wq, except that then
the branch b is found not in V but in V[G] where G is generic over V for col{w, w).

Theorem 2.28 is essentially a reformulation of [Ste96, Theorem 9.14], but with
several differences. First, Theorem 2.28 is stated in the context of Jensen’s in-
dexing, and its proof requires use of condition 4 in Definition 2.20 rather than
the parallel [Ste96, Definition 1.1(b)]. The reader interested in the modifications
which must as a result be made to the proof of [Ste96, Theorem 9.14] may find
those in [Jen98a, §3]. Secondly, [Ste96, Theorem 9.14] is stated for arbitrary
phalanges, while Theorem 2.28 is more restrictive. With respect to this second
difference our Theorem is easier. Thirdly, our weak embeddings are weaker than
those of [Ste96]. The proof of [Ste96, Theorem 9.14] adapts with no serious mod-
ifications. Let us only point out that the property of weak embeddings described
in Remark 2.14 is essential to the proof. The reader familiar with copying con-
structions may get a hint of the importance of Remark 2.14 by noting its use in
copying. Finally, Theorem 2.28 places stronger demands on the branch b than
do [Ste96, Theorem 9.14] and [Jen98a, §3]. The extra strength is in the case that
there are truncations along b. Standard realizability demands would state only
that the final premouse of b embeds into the construction. Our demands in Theo-
rem 2.28 state not only that the final premouse embeds into the construction, but
that every premouse on the branch which stands at a truncation point along b
embeds into the construction. We further demand that these embeddings cohere
in the way stated in Definition 2.27. With respect to this last difference the proof
of [Ste96, Theorem 9.14] must of course be strengthened. In the proof of [Ste96,
Theorem 9.14] Steel defines coarse ZFC™ models Rg for 8 < sup(7T). Inside each
Rp he maintains a Qg, which is a stage of the K¢ construction relativized to Rg,
and an embedding mg of N, ﬂT into Q@g. To prove Theorem 2.28 one must instead
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maintain in Rg a realization (in the sense of Definition 2.27) of the entire easy
phalanx induces by the branch of 7" leading to 4. Similarly the “tree of attempts”
which Steel defines must be revised to search for a branch b and a realization of
the entire easy phalanx induced by b, not just the last premouse. Checking that
this modification can be carried through is a simple matter of commuting all the
relevant diagrams. The careful reader will no doubt wish to do this herself.1*

Remark 2.31: We should point out that the proof of Theorem 2.28 does not
produce elementary embeddings. More precisely, even if one started with a real-
ization 7, # whose embeddings are elementary, the commuting realization /%,
given by Theorem 2.28 may include embeddings which are just weak.

3. Domestic premice

This Section centers on the proof of Theorem 3.2, stated below. Once proved,
Theorem 3.2 immediately implies that (1) holds for the domestic levels of K¢
(Corollary 3.3).

Definition 3.1: A premouse N = (Ja x[E], Ea) is said to be domestic if there
does not exist ¥ < o which indexes an extender F, satisfying:
1. & = crit(E,) is a limit of cardinals § so that J,[E[v] E*§ is a Woodin
cardinal;” and
2. & = crit(E,) is a limit of cardinals 7 so that J, [Elv] = “r is strong to .”

Being domestic is a IT; property and is therefore preserved by elementary
embeddings.

THEOREM 3.2: Let N be a countable premouse which embeds weakly into an
existing level of the K¢ construction. Assume that N is domestic. Let v be the
least stage such that N' embeds weakly into M,, and let m: N'— M,, be the left
most weak embedding (wrt a fixed enumeration € = (e; | i < w) of N).1®

Then for any normal, maximal, non-overlapping iteration tree T on N of count-
able length, there exists at most one cofinal branch of T which is super-realizable
(wrt v, 7).

14 To help the careful reader, let us point out that the proof of Theorem 2.28 starts
with a single coarse model Ry = V and the realization of N given by 7, %, not
with n distinct Ri-s and individual realization of the premice A;.

15 By left most we mean that for any weak o: N’ — M,,, either ¢ = 7 or else n(e;)

is less than o(e;) in the order of construction on M,, where i < w is least such
that m(e;) # o(e:).
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COROLLARY 3.3: Suppose that M, has been constructed and that M, is do-
mestic. Let M be a countable elementary substructure of M,. Then M is
wy + 1 iterable.'® Furthermore, if € is an enumeration of M then there exists an
iteration strategy of M which has the weak Dodd-Jensen property relative to €.

Proof: Reducing v as needed let us assume it is the least stage such that M
embeds weakly into M,,. Let 7 be the left most weak embedding. Define an iter-
ation strategy I' for M by letting '(7) be the unique maximal super-realizable
branch through 7. (Existence and uniqueness are given by Theorems 2.28 and
3.2.) If T is itself built according I' then Theorem 3.2 applied to initial seg-
ments of 7 guarantees that the maximal branch is in fact cofinal, as needed. If
Ih(7) = wy, collapse wy and obtain I'(7) in the generic extension. Theorem 3.2
continues to apply in the generic extension. The uniqueness given by 3.2 and the
homogeneity of the collapse imply that this branch in fact exists in V.

It can be seen that I' has the weak Dodd-Jensen property relative to &. The
reason is that v was chosen least and = was chosen left most. We refer the reader
to [NS99, Section 3]. 1

Corollary 3.3 establishes (t) for the domestic levels of K¢, demonstrating that
the construction of K¢ cannot break down before it reaches a non-domestic pre-
mouse. Assuming that  is measurable we can now apply Theorem 1.1 and so
deduce Corollary 1.2.

Remark 3.4: Theorem 1.1 itself is the combination of three results. The first, due
to Todorcevic, shows that PFA implies O, «,, fails for all uncountable cardinals
. The second, due to Steel, shows that (assuming (1) holds and Q is measurable)
either (fﬁF)Kc
strong cardinal. The third, due to Schimmerling, shows that below superstrong
and assuming (1), K¢ satisfies O, «,, for all .17 If (f<;+)KC = (k*)" then Op <w
reflects from K€ to V. Thus combing the three results gives Theorem 1.1.

v
= (k1) for measure 1 many s < 2, or else K¢ reaches a super-

Steel's proof that K¢ computes £ correctly for measure 1 many & < {2 requires
the uniqueness of F' given by Case la in the construction of K¢ (Section 2). It is
for this reason that we cannot in Case 1b simply choose one of the extenders F;
and continue constructing. Instead we have to know that Case 1b never occurs.

Now [MitSt94, Theorem 9.2] (or [Jen97, Lemma 6.1] in the context of Jensen’s
indexing) demonstrates that iferable pre-bicephali do not in fact exist. The it-
erability given by (f) then implies (—1b). Thus to prove Corollary 1.2 we must

16 For normal, maximal, non-overlapping iteration trees.
17 There are stronger results; see [SZ].
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prove Corollary 3.3 not only for premice which embed into levels of the K¢ con-
struction, but also (potentially) for pre-bicephali which embed into levels of the
K¢ construction. (We then conclude that there are no pre-bicephali on the K¢
construction, but this can only be done after the fact.l) The iterability proof for
pre-bicephali is essentially the same as the one which we give below (for premice),
and we shall not trouble the reader with the tedious repetition.

Let us start working towards a proof of Theorem 3.2. Assuming the existence
of two super-realizable cofinal branches we will derive a contradiction by com-
paring the easy phalanges induced by these branches. Thus the key to our proof
is the ability to compare easy phalanges which contain only domestic premice.
There are two conflicting requirements in any attempt to conduct such a com-
parison. In forming the iteration trees of the comparison process we must first
and foremost make sure that cofinal wellfounded branches exist at limit stages of
the comparison. The easiest way to secure this would be to use linear iterations.
Secondly we must make sure that the comparison terminates (more precisely we
must secure condition () of Claim 3.29). The standard way to secure this is
to use non-overlapping iteration trees so that generators are not moved. Our
approach is to balance the two requirements. We shall use iteration trees which
do move generators, but in a way limited enough that we can still secure 3.29(x%)
and show that the comparison terminates. This moving of generators will allow
us to structure the iteration trees so that it is easier to obtain cofinal wellfounded
branches.

The precise structure of the trees we intend to use (balanced iteration trees)
is stated in Definition 3.13. To have recourse to the results of Section 2 we must
check that these trees are sturdy. This is done in 3.5-3.14. 3.16-3.23 prove
the existence of cofinal branches through iteration trees in various special cases.
Lemma, 3.24 is our main tool in showing that balanced iteration trees which arise
in comparison of domestic premice can be reduced to these special cases. The
rest of the Section is a comparison process which proves Theorem 3.2.

Definition 3.5: Let R be an iteration tree on a premouse A. Fix an extender E
and an ordinal v < 1h(R).

We say that E conflicts with generators at ¢ if crit(E) lies in the interval
[crit(ER), In(ER)) where ER is the e-th extender on R. g(E) is the least € such
that E conflicts with generators at e if there are conflicts, and oo otherwise.

We say that the pair E, v conflicts with projecta at ¢ if € is a truncation
point on the branch of R leading to v, and crit(E) < p(N7). p(E,«) is the least
¢ such that E, v conflicts with projecta at ¢ if there are conflicts, and «y otherwise.
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We say that E, v is conflict free if (a) v < g(F); and (b) E, -y does not conflict
with projecta.

CLAIM 3.6: Suppose R is maximal, and E, v conflicts with projecta at e. Then
crit(E) < h(ER).

Proof: By assumption € <® « is a truncation point on the branch leading to
7, and (a) crit(E) < p(N.). Let ¢ + 1 be the successor of € in [¢,y]g. Since R
is maximal, (b) p(N) < crit(EZz). Since the <™ predecessor of { + 1 is ¢, (c)
crit(ER) < 1h(EF). Combining a,b,c proves the Claim. .

Definition 3.7: An iteration tree R on a premouse N is suitable if
1. R is normal;
2. R is maximal;
3. For £+1 < Ih(R) and + the <™ predecessor of £ +1, Ega, v is conflict free.

CrLaM 3.8: If R is normal, maximal, and non-overlapping, then R is suitable.

Proof: For v+ 1 < Ih(R) let A, denote the length of E*. Remember that R
is non-overlapping just in case that (NOL) for ali £ + 1 < 1h(R), the immediate
<® predecessor of £ + 1 is the least  such that crit(EF) < A,.

Claim 3.8 follows immediately from the minimality of v given by NOL, using
the definition of conflict with generators and Claim 3.6. ]

LEMMA 3.9: Suitable iteration trees are sturdy.

Proof: We work by induction on the length of the tree. The limit case is clear,
as is the case Ih(R) = £ + 1 where £ is a limit. So let us assume h(R) = & + 2.
By induction 2.24(3,4) hold for ¢ < £&. We must verify these conditions for e = &.
Let v be the immediate <® predecessor of £ + 1.

Cramv 3.10: 2.24(4) holds at e = £.

Proof: Assume « is non-simple. Since we are dealing with a tree on a single
premouse, non-simplicity can only be caused by a failure of 2.23(b). So there are
truncations on the branch of R leading to . Let ¥ be the largest such truncation.
By Lemma 2.25 (which we can access through our induction hypothesis) p(N5') =
p(NF). Now E;R,'y does not conflict with projecta by 3.7(3). Since ¥ is a
truncation point on the branch to v we conclude that crit(Egz) £ p(N5). In
other words crit(EJ) > p(NR) as required. 1 (Claim 3.10)
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Cramv 3.11: 2.24(3) holds for e = €.

Proof: Let P = NF. E[F is an extender on the sequence of P. Let n be its
index. Let & = crit(EJ), and let 7 be the successor of & in P || (1,0). Let
M denote N{ = N, £+l Note that by standard agreement of premice along an
iteration tree, M and P || {n,0) agree to 7 and Egz is an extender over M (else
v would not be the predecessor of £). It is enough to prove

(A) P(r)NE(P || (n,0)) C T1(DM)).

An appeal to Fact 2.17 would then complete the proof of the Claim. Suppose
(A) fails. By reducing ¢ if needed we may assume that (0) for any &,7, if (a)
v < € < &, (b) 77 indexes an extender on P = J\/ER whose critical point equal &,
and (c) the successor of  in P||{7, 0) is 7, then P(7)NE((P]|(7,0)) C Z1(D(M)).

STEP 1: If £ = then P || (n,0) is an initial segment of M and (A) is clear. So
let us for the remaining steps assume (1} £ > «.

STEP 2: If n < o(P) then P(t) N Z:(P || (n,0)) C P(r) N P. But standard
agreement between premice on iteration trees (together with 1) imply that P(7)N
P c M, and (A) follows. So let us assume (2) n = a(P). In particular EgR is
the last extender predicate of P, so « is 2 definable over P.

STEP 3: Let u be the largest element of [0,£]rN(y+1). If there are truncations
on [u,&)r, let € <® ¢ be the largest such. Otherwise set £ = u. Note that
lh(E?f) > & (else v couldn’t be the predecessor of £ +1). By 1 and the normality
of R, it follows that the length(s) of the extender(s) used on [£,£]x must be
above k. By 2 & belongs to the range of z'gg‘ Thus the extenders used on [£,¢&]z
cannot overlap . It follows that crit(igs) > k. Since 7 is the successor of £ in
P we conclude that (3) crit(i‘gg) >

STEP 4: If p(P || (n,0)) > 7 then P(r)NX1(P || (n,0)) C P. But then standard
agreement between P and M would give (A). So assume (4) p(P || (n,0)) < 7.

STEP 5: If k(P) > 1 then by 4, 9(P) < 7. But this would contradict 3, since
the way we take ultrapowers (see Section 2) is such that the critical points are
below the true height. So k(P) = 0 and by 2 we conclude that (5) P = P|| (n,0).
Let P = Afg'—‘ By induction we know that R[&+1 is sturdy. This and 3 imply
that P(r)NZ1{D(P)) C P(r) N1 (D(P)). Given 5 it is thus enough to show

(B) P(r)NX1(D(P)) C T (DM)).
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STEP 6: If £ > v then (B) follows from 0 with 77 = (P). (Note that P || {7, 0)
then equals P.) Thus we may assume that (6) £ < .

Remark 3.12: Our proof so far followed in the footsteps of [MitSt94, Lemma
6.1.5]. [MitSt94, Lemma 6.1.5] is stated for non-overlapping trees, and goes on
to directly argue that 6 is impossible, using NOL. We must proceed differently
since we are working with the more general concept of suitable iteration trees.
We shall use our assumption that R is suitable in 7c and 9 below.

STEP 7: Let { be least such that lh(Egz) > k. Extenders with critical point
K or greater cannot be applied to models indexed before {. Since crit(igg) >T
it follows that (7a) ¢ < €. Using 6, ¢ < 4. By normality, (7b) Ih(ER) > & for
¢ € [¢,7). By assumption R is suitable. Since v is the predecessor of E€R it
follows that v < g(EZZ) Using 7b it follows that (7c) crit{(ER) > & for ¢ € [¢,).
In particular none of these extenders can be applied to models indexed before .
Thus (7d) ¢ <® ¢ for all ¢ € (¢, 7).

STEP 8: Let Q = Ngz Let Q be the least initial segment of Q so that a(Q) >
Ih(EE) and p(Q) < & if there is such a segment. Let Q = Q otherwise. Using 7c
we see that (8) for any ¢ € (¢, 7], N, ¢ » as computed relative to the branch [(, ¢z,
is an initial segment of Q.

STEP 9:  Suppose NC_ , as computed relative to [(, 7], is a strict initial segment
of Q. (In particular ¢ < v is a truncation point on [(,7]z.) From the definition of
Q it follows that p(N, ¢ ) > &. But then EF, y conflicts with projecta at . This is
impossible, since v is the <™ predecessor of £ + 1 and R is suitable. We conclude
that A cannot be a strict initial segment of Q. Using 8 it follows that (9a) ¢
as computed relative to [, v]®, is equal to Q. Suppose next there are truncations
on (¢,7)r. Let 7 < be the first such. We have i%;: O — NX elementary, and
N5 is a strict initial segment of NA—?{ It follows again that p(N5) > x and so
Egz, 7 conflicts with projecta at 4. Again this contradicts our initial assumption
in Lemma 3.9 that R is suitable. We conclude that (9b) there are no truncations
on (¢,7)r- Suppose finally that v is a truncation point on the branch leading
to £ + 1. Remember that M = Nv_ , as computed relative to the branch leading
to £ + 1. If there is a truncation then M is a strict initial segment of ./\/,Zz and
as before we conclude that p(M) > k. But this is impossible; if Eg2 causes a
truncation at vy then p(M) < crit(EgR) = & by the maximality of R. Thus we
conclude that (9c) M = AR

STEP 10: Combining 9a,b,c we see that R defines an embedding i?ﬂ: Q— M.
Through our inductive assumption we know that the extenders used on ¢, Y=
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satisfy 2.24(3). By 7c, these extenders have critical points at least 7. It follows
that (10) P(1) N Z1(D(Q)) = P(1) N T, (D(M)).

STEP 11: Suppose £ = (. Remember that crit(igg) > 7 by 3. From this
and the definition of @ it follows that P, which is equal to Ng—_ as computed
relative to the branch leading to &, is an initial segment of Q. It follows that
P(r) N Z1(D(P)) C Z1(D(Q)) (with equality if P = Q). But this and 10 give
(B), completing the proof of Claim 3.11. So let us assume that (11) € # (.

STEP 12: By 11, 7a, and 7d, ¢ <® £. N7, as computed relative to the
branch leading to £, is an initial segment of @ by 8. By 7c the extenders
used on ((,€)r have critical points at least 7. These extenders, through our
inductive assumption that R & + 1 is sturdy, satisfy 2.24(3). From all this it

follows that P(7) N Z;(D(P)) C £1(D(Q)). This together with 10 gives (B).
#(Claim 3.11, Lemma 3.9.)

Definition 3.13: An iteration tree R on a premouse A is balanced above 7
just in case that

1. R is normal;

2. R is maximal; and

3. For £ +1 < Ih(R), € > n: the <® predecessor of £ + 1 is equal to

p (ER, min{¢, g(BF)} ).

R is said to be balanced if it is balanced above 0.
Observe that balanced iteration trees may move generators in a limited way. For
¢+1 <® ¢+1it is possible that EF overlaps EZ, i.e., crit(Ef) < Ih(EF).
However crit(EX) cannot lie in [crit(EY), Ih(EE)).

LEMMA 3.14: Suppose R is balanced above 1, and R|n + 1 is non-overlapping.
Then R is sturdy.

Proof: Let us check that R is suitable. (By Lemma 3.9 this is enough.) Con-
ditions 3.7(1,2) follow trivially from the corresponding conditions in Definition
3.13. 3.7(3) for £ < 7 follows from Claim 3.8. 3.7(3) for £ > 7 follows trivially
from 3.13(3). |

Lemma 3.14 may seem insignificant, but it is essential to our argument. It
gives us access to the results of Section 2, particularly Lemma 2.25(b) which will
be crucial later in Claim 3.32. It is our need to prove Lemma 3.14 that forced us
to include conflicts with projecta in Definition 3.13; Claims 3.10 and 3.11 both
required that we avoid conflicts with projecta.
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Remark 3.15: Suppose R is normal and maximal, F is an extender of N'gz, and
€ is equal to p(E, min{¢, g(E)}). If € < £ then crit(E) < 1h(EX). (This follows
using Claim 3.6.) Thus N and NﬁR are in sufficient agreement that E can be
applied to ./\/ER (or to the appropriate initial segment of this premouse).

Definition 3.16: Let R be a sturdy iteration tree on a premouse N and let a be
smaller than the length of R. For v <® « a truncation point of [0, a]r, let Ay
denote p(N"), where NV is computed relative to the branch [y, a]r.

R is said to be semilinear at « just in case that for every £ such that a <
£+ 1 <1h(R):

1. The <® predecessor, (, of £ + 1 is either (a) greater than or equal to a or

(b) a truncation point of [0, a]g; and
2. If (b) holds then crit(Egz) < Ac-

If R is semilinear at & then R can in fact be viewed as an iteration tree on the
easy phalanx N%*= induced by the branch of R leading to . {(Condition 2 of
Definition 3.16 represents the limitations imposed by the exchange ordinals of the
easy phalanx N [0.a)= } We denote this iteration tree by R*. Observe that R* is
sturdy: Conditions 2.24(1-3) reflect trivially from R to R*. The non-primordial
roots of R* correspond to failures of 2.23(b) on R. Thus an index ~ of R* is
non-simple (as an index in R*) iff it is non-simple as an index in R. It follows
that 2.24(4) too reflects from R to R*.

Definition 3.17: Let R be a sturdy iteration tree on a premouse A, and assume
that R is semilinear at «. Let 7, % be a realization of the easy phalanx N10elr,
We say that (wrt 7, @) R picks unique realizable branches above o if for
any 7y strictly between « and 1h(R),
1. The branch of R leading to v is super-realizable when viewed as a branch
through R* and with respect to the realization 7, 7 of N [0.0]= . and

2. The branch of R leading to v is furthermore the only cofinal branch of R|~y
which satisfies 1.

LEMMA 3.18: Let R be a sturdy iteration tree of countable length 6 on a pre-
mouse N. Let a < 8. Assume that

1. N0el s realizable. Let i, 7 witness this;
2. R is semilinear at «; and
3. (wrt 7,7) R picks unique realizable branches above a.

Then there exists a cofinal branch b through R which (wrt 7, ®) is super-realizable
when viewed as a branch through R*.
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Proof: By Theorem 2.28 there is a mazimal super-realizable branch b through
R*. Viewed as a branch through R, b satisfies all requirements of the conclusion
of Lemma 3.18. (It is cofinal because of assumption 3.) ]

LEMMA 3.19: Work under the assumptions of Lemma 3.18, except that instead
of assuming 8 = \h(R) is countable, assume that 8§ = wy. Then the conclusion of
Lemma 3.18 still holds.

Proof: Let us for a while work in V[G] where G is generic over V for col(w,wy).
By Remark 2.30 the proof of Lemma 3.18 goes through, producing in V[G] a
branch b which satisfies the conclusion of Lemma 3.18. We claim that in fact b
is an element of V. Given the homogeneity of the forcing col{w,wy), it is enough
to argue that in V[G] the branch b is the unique branch satisfying the conclusion
of Lemma 3.18. Assume for contradiction that some other branch b’ satisfies the
same. Let H be a countable elementary substructure of V,, for some large regular
u, and throw all relevant objects into H. Let V be the transitive collapse of H
and k: V — H the anti-collapse embedding. Let G be V-generic over col(w,w) ).
G can be found inside V. Let b and ¥ be names for b and b'. Let b and b’ be the
interpretations of k~1(b) and k~1(}') using the generic G. Both belong to V.

Let R be the pre-image under k of R. Note this is equal to R[+y, where
v = wy; N H. Let R* be the pre-image under k of R*. This again is R*[v. («
of course is not moved by k.) The elementarity of k guarantees that in V, b
and b’ are two distinct super-realizable cofinal branches through R*. Composing
the embeddings which witness this with k demonstrates that in V, b and ¥’ are
distinct super-realizable cofinal branches through R*{+~. But this contradicts the
uniqueness of assumption 3 in Lemma 3.18. |

Let R be a sturdy iteration tree on a premouse N. Let o < 1h(R) and let 7/, &
be a realization of N10®I% | Assume that R is semilinear at o and that b is either a
branch through R or a branch of R with supremum greater than o. A realization

i

, 2 of A? is said to commute with 7,7 just in case that it commutes with
U, % when viewed as a realization of a branch through R*. Similarly the meet
of #,# and i, #® is defined according to Definition 2.29 applied to R* — it is

7] € + 1 where € is the largest element of b N (o + 1).

LEMMA 3.20: Let R be a sturdy iteration tree on N of limit length 6. Let
(ag | k < w) be a sequence of ordinals cofinal in 6. Assume that

1. For each k < w, R is semilinear at .
Let N'* denote the easy phalanx N1%®+)®= induced by the branch of R leading to
ax. Let 7, it% be realizations of the phalanges N'*, and assume
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2. For k < k' < w, the realizations /*

Then there exists a cofinal branch b of R, and a realization #®, 7 of N b so that
for each k < w the realizations 7*, #* and 7, #* commute.

kl

— [
, 7% and 7* | 7% commute.

Proof: Let us say that a finite descending sequence of stages 7 is a permanent
resident if there exists k < w such that
e 17 is an initial segment of 7*; and
e For all ¥’ > k, 7 is an initial segment of the meet of the k-th and the k’-th
realizations.
Non-trivial permanent residents certainly exist: #* all start with the same first
stage. This stage is a permanent resident of length 1.

Let 77 be the minimal permanent resident, using the lexicographic (Brouwer-
Kleene) order on descending sequences of ordinals. Let k witness that 7 is perma-
nent. Let n be the last (smallest) stage in 77. For [ > k let ¢; be the unique index
of a premouse of N such that Vél = 1. Such an index exists by the demands of
commutativity and the fact that 7 is permanent. The demands of commutativity
also imply that ¢, <® ¢ for [ < I, that there are no truncations on the branch
[e1, €2) R, and that the following diagram commutes:

My

i
7r€[l
l
e

;R
(2
N NE

€1

CLAIM 3.21: For every | > k, there exists j > | such that €; > qy.

Proof:  Fix I > k and assume for contradiction that ¢; < o for all j > [.
It follows that ¢ < ¢; are both indices in N, Since there are no truncations
on [e,€;)r we conclude that (1) €; = €. Since ##[e + 1 = 7 is the minimal
permanent resident, there exist arbitrarily large j > [ such that (2) the meet of
the j-th and (j +1)-st realizations is precisely i”! | ¢+ 1. By thinning (o | k < w)
if needed we may assume that 2 holds for all § > . By 1 it follows that ¢ is
a truncation point of [0,a;]g for all j > I. Let & + 1 be the successor of ¢
in [0, 5], let x; = crit(ng), and let A; = p(N¢ ;). We have (3) A; < k;
since R is maximal. Note that {;;, > a; by 2 and the definition of the meet.
The demands of semilinearity at «;, specifically 3.16(2), therefore imply that (4)
Kj+1 < Aj. But 3 and 4 together produce an infinite descending chain of ordinals,
giving the desired contradiction. B (Claim 3.21)
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1t follows from Claim 3.21 that the ¢-s converge to 6, and therefore define a co-
final branch of R. Let b be this branch. It is easy to see that N is realizable. The
realization includes 7*| e, 7| ek, followed by 7 and 7, where  is the direct limit
of the embeddings 7% , [ > k (well defined using the commuting diagram above).
Clearly this realization commutes with all previous ones. B (Lemma 3.20)

LEMMA 3.22: Work under the assumptions of Lemma 3.20. Then there is only
one branch b which satisfies the conclusion of Lemma 3.20.

Proof: Let b be the branch defined in the proof of Lemma 3.20, and assume for
contradiction that ¢ is distinct from b and satisfies the conclusion of the Lemma.
Fix 7¢, #¢ which witness this.

We claim to begin with that ¢ is permanent. Indeed, let k be large enough
that ay is bigger than all truncation points of ¢. The fact that R is semilinear at
oy, easily implies that ¢ is an initial segment of 7*. The fact that R is semilinear
at oy then implies that ¢ is an initial segment of the meet of the k-th and k'-th
realizations, for ¥’ > k.

Work now with k£ < w large enough that all truncations on ¢ occur before ay,
and large enough to witness that 7 (of Lemma 3.20) is permanent. For [ > k, let
¢; be the largest element of ¢ which is less than or equal to ;. It is enough to
verify that for arbitrarily large | < w, (; is equal to ¢; (of Lemma 3.20). Since c
is cofinal there certainly are arbitrarily large | < w for which ¢ N (ay, z41] is not
empty. Let us work with such an ! and aim to prove that (; = €.

The semilinearity of R at «; implies that {; is an index of a premouse of Nt
Further, the commutativity satisfied by ¢ implies that 7° and 71 + 1 are the
same. Now the fact that 7 is permanent together with the minimality of 77
implies that ¢; < ¢. Thus it is enough to eliminate the possibility that {; < €
strictly. Assume for contradiction that this is the case.

Before proceeding further let us note that the above argument can be repeated
for | + 1, demonstrating that {;11 < €41 (so in fact {44 <R €141). Our choice
of [ is such that ¢ N (ay, ay41] # @ and so by definition we have (11 > a5 > €.
Combining this with our assumption for contradiction we see that {; < ¢ < (41.

Remember that by choice of k there are no truncations on [{f,(i+1)=. In
particular (; is not a truncation point of this branch. Now (;, being an index
below ¢ of a premouse of N, is a truncation point on [, é/)r. As ¢ is not a
truncation on [(;, (;+1)r, & cannot belong to ({;,(i+1)r. Since we know that
{1 < € < (41 and that (41 <R €141 we conclude that ¢ £® €41. But this is a
contradiction. ]
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LEMMA 3.23: Let R be a sturdy iteration tree on N of length w,. Let
(o, | ¢ < wi) be an increasing sequence cofinal in wy. Assume that

1. For each ¢+ < wy, R is semilinear at «,.
Let N* denote the easy phalanx Ni0adr induced by the branch of R leading to
«,. Let ¥, be realizations of the phalanges N* and assume that

2. For i <! < w,, the realizations 0*, ®#* and 17", 7' commute.
Then there exists a cofinal branch b of R and a realization #®, @* of N b so that
for each « < w the realizations 7*, #* and 7, #° commute.

Proof:  Apply Lemma 3.20 in V[G] where G is generic for col(w,w;). Let b and

7, 7 be the branch and realization given by Lemma 3.20. Observe that #°, 7% in

fact commutes with 7*, 7 for all ¢ < w; (not only those t-s which belong to the
particular w—sequence of the generic extension used in applying Lemma 3.20).
The commutativity condition satisfied by b, 7, #° is therefore independent of the
choice of G. The uniqueness given by Lemma 3.22 together with the homogeneity

of the collapse now imply that b is in V. |

The previous Lemmas demonstrate that it is possible to find cofinal realiz-
able branches through iteration trees with many points of semilinearity. The
next Lemma shows that if one works with domestic premice, and uses balanced
iteration trees, then enough points of semilinearity do indeed exist.

LEMMA 3.24: Let R be a sturdy iteration tree on a domestic premouse N'. For
&+ 1 < 1h(R) let ¢ denote the index (in Ngz ) of the {-th extender used on R.
Let o < 1h(T) be a limit, let o = sup{ve | £ < a}, and assume that for all
£ a,

(%) N? l{7¢,0) = “64 is a Woodin cardinal.”

Assume finally that R is balanced above «. Then R is semilinear at .

Proof: Assume for contradiction that R is not semilinear at «, and let £ > « be
the least counter example to semilinearity. Since R is balanced, the <® prede-
cessor of £+1 is p(Egz7 min{¢, g(Ega)}) Since € witnesses failure of semilinearity,
certainly p(Ef, min{¢, g(EZz)}) <a.

We claim that in fact g(Eﬁn) < o Assume otherwise for contradiction. Then
a< g(EgR) < €. By the minimality of £, the largest element, v, of [O,g(Egz)]R n
(a 4+ 1) is either (a) o or (b) a truncation point of [0,a]g. If (b) holds then
(c) the first extender used on [y, g(E,)}r must have critical point smaller than
Ay = p(N) (where N~ is computed relative to the branch [0,ajz). Let € =
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p(Egz, min{¢, g(Egz)}) Since € < a is on the branch leading to g(Egz) we must
have ¢ <® +. Suppose first that ¢ = 4. Then b holds. By Definition 3.5, (d)
€ is a truncation point of [0, g(EgR)]R. It follows by maximality of R that (e)
p = p(N7) (where N is computed relative to the branch [0, g(EF)]=) is at most
the critical point of the first extender used on [e, g(EZa)]R. Again by Definition
3.5, (f) crit(EZz) < p. Combining f, e, and ¢ we get crit(EZz) < Ay. But this
implies that ¢ satisfies conditions 1b and 2 of Definition 3.16, so £ is not a counter
example to semilinearity. Suppose next that € <R « strictly. Since v is a point on
[0, g(Egz)]R above € we may in d and the definition of p for f replace [0, g(EF)|=
with [0,]%. Since v <® o we may then replace [0,7]z with [0,a]z. But then
€ satisfies conditions 1b and 2 of Definition 3.16, so again £ is not a counter
example to semilinearity. Thus in either case we obtain a contradiction.

Let ( = g(Egz). We have ( < a by the above, and crit(EZz) lies in the interval
[crit(ER), Ih(ER)) by Definition 3.5. We shall show that NE is not domestic,
thereby deriving a contradiction to our assumption that A is domestic. The
witness that N7 is not domestic will be the extender EEF.

Since g(EF) < azand £ > o we have crit(ER) < §q < Ih(EF). Our assumption
(*) and the elementarity of the embedding coded by EF thus imply that crit(ER)
is a limit of Woodin cardinals in N'ER cut at the successor of crit(Egz). Since
NE|l(7¢,0) and N X have the same subsets of crit(EF) it follows that crit(EF) is
a limit of Woodin cardinals in Ngzn('y(, 0). This, our knowledge that crit(Egz) €
[erit(ER), Ih(EE)), and the elementarity of the embedding coded by EE, imply
that crit(EY) is a limit of Woodin cardinals in NE[|{7¢,0). Condition 1 in
Definition 3.1 therefore holds, and it remains only to verify condition 2. Assume
for contradiction that condition 2 fails, and fix some § < crit(EZz) so that there
are no cardinals of NCR which lie between 8 and crit(EZz) and are strong to
crit(EZz). Using the elementarity of the embedding coded by EZz we have

(%%) Noke [crit(EZz),lh(EZZ)) is strong to lh(EZz) in ./\fCRH(fyC,O).

Remark 3.25: Note our use of the fact that the embedding coded by Ezz sends
crit(E'Zz) to lh(EZz). We are thus making implicit use of the method of indexing
explained in Section 2; if the length of an extender were defined differently we
would not be able to claim (**) as stated, and the interaction with condition 3
below would be ruined.

We have at our disposal £ and an extender E' on the sequence of Ngz (namely
EF), with the property that
1. £>(;
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2. Ih(E) > In(EE); and

3. crit(E) lies in the interval [crit(E?), lh(Eza)).

(Let us point out that 3 is a direct consequence of the definition of g(F) in 3.5.)
To derive a contradiction to (#«) it is enough to show that the restriction of F
to any ordinal 7 < 1h(EF) belongs to NF||(v,0); E is indexed above ¢ and
so these restrictions certainly are strong extenders of NCRH(W’QO)- In light of 3
these restrictions would witness that x = crit(E) contradicts (). The argument
we give below doesn’t quite do this. Instead we will either prove that the above
restrictions belong to NCRH('yC,O), or else will produce £ < ¢ and an extender
E which satisfy 1-3 above. Applying this argument inductively (reducing £ as
necessary) gives a contradiction to (xx), thereby proving that condition 2 in
Definition 3.1 holds.

Let us begin the argument. We follow a line of reasoning similar to one used in
[Jen97, §6]. By 1, ¢ is a cardinal of A, 572 If E is not the last extender predicate
of NV, gz then the extender E belongs to N, gz By acceptability, for any 7 < lh(EZz)
the restriction F|r belongs to /\fERH(fyC,O). But Ngz and NX agree up to ..
Thus E|r belongs to NZ||{v;,0) and we are done.

Consider then the remaining case, that E is the last extender predicate of ./\fgz.
First let us suppose that on the branch of R leading to £ there are truncation
points which are greater than (. Let £~ be the last such truncation point, so that
R defines an elementary embedding ¢ = i&: N é_ — NER, and ./\fg is a strict
initial segment of A, gz. Let E be the last extender predicate of ./\/55. The map

i thus sends E to E. Observe that crit(i) cannot lie in [crit(ER), In(ER)) since
any extender whose critical point lies in this interval would be appliefl to N, gz ora
premouse before it, and therefore would not be used on the branch (£, £]r. crit(7)
also cannot be smaller than crit(EZz); if it were then the range of 7 would contain
no elements of the interval [crit(EZz), lh(EZz)], but we know that the range of i
does contain such an element, namely crit(E) = i(crit(E)). Thus we conclude
that crit(¢) > Ih(ER). It follows that 1h(E) must be at least Ih(EY), and that
crit(E) equals crit(E). Thus £ < £ and F satisfy 1-3.

Let us finally consider the case that E is the last extender predicate of NX,
and there are no truncation above ¢ on the branch of R leading to £. Let £ be
the largest element of [0,£]x which is smaller than or equal to ¢, and let E+1
be its successor on this branch. Then f + 1 < £ so that certainly E < €& Let N
denote either J\Q—R if £ is not a truncation point of [, £}z, or J\fg-_ if it is. In either
case, the iteration tree R defines an elementary embedding ¢ = i&: N — NER
The first extender used to produce i is the extender EZ—2 Let E be E?
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Let E be the last extender predicate of N, so that i(E) = E. Thus crit(E) =
i(crit(E)) and therefore belongs to the range of i. Now no elements of the interval
[crit(E),1h(E)) can belong to the range of 4. The normality of R implies that
Ih(E) > lh(E?) > crit(E). Since crit(E) belongs to the range of ¢ we conclude
that crit(E£) > crit(£). On the other hand, since E is applied to a premouse
of R indexed at or before {, certainly crit(E) is smaller than lh(EZz). crit(E)
therefore belongs to (crit(EZ{),lh(EZz)) and 3 holds. Since crit(E) > crit(EZz)
certainly E # EZz 80 f # ¢ and 1 is satisfied. 2 also is satisfied because of the
normality of R. Thus £ < € and F satisfy 1-3 as required. |

Equipped with the previous Lemmas we can begin the proof of Theorem 3.2.
Work with A and v, 7 as given by Theorem 3.2 and assume towards a contra-
diction that 7 has two distinct super-realizable branches b and c¢. Let P and O
be the easy phalanges induced by these branches, and let ¥ and ¥ be the super-
realizations of these phalanges.!® We view the premice of P and J as indexed by
their index on 7. Thus the last premouse on both 7 and & is indexed by 1h(7).
Let 7 denote the length of 7.

We shall (roughly speaking) compare P and O using balanced iteration trees,
appealing to Lemmas 3.18, 3.19, 3.20, and 3.23 to obtain branches through the
iteration trees produced. We shall make sure for each o either that both trees
pick unique realizable branches at «, or else both trees are semilinear at a. To
secure this second possibility we shall use Lemma 3.24: At a-s where there are
two or more realizable branches we will take advantage of the distinct branches
to make sure that the hypothesis of Lemma 3.24 —the condition () that is— is
satisfied. Our argument in these circumstances is similar to the multiple board
comparison used by [Ste93], though we shall avoid actually adding boards to the
comparison.

Though our construction is really a comparison of P and G, it is perhaps better
viewed as the construction of two iteration trees which extend 7. On one side we
construct an extension I which uses b as the branch [0, 7]y, while on the other
side we construct an extension ¥ which uses ¢ as the branch [0, 5]y.

We construct these iteration trees by induction on « > 7. At stage a we will

18 The realization of N’ includes a finite sequence of ordinals in addition to 7. The
first ordinal in this sequence is v, and subsequent ordinals in the sequence are
determined inductively by condition 2 of Definition 2.27, given N? and 7. Since
this finite sequence of ordinals is uniquely determined by v,b, 7 we suppress its
mention below. We similarly suppress mention of the ordinals involved in the
realization ¥ of ¢, and in all realizations of future branches, in the trees on both
sides.
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have on the two sides of the comparison:

A. A (padded} balanced iteration tree U[« which extends 7 and so that
[0, 9]u = b; and similarly V| « which extends 7 and so that [0,7]y = ¢;

B. A set of ordinals B N« which is a closed subset of a and so that n € B;
For @ € BNa let bz denote the branch of U leading to the a-th premouse of this
tree. Let P2 be the easy phalanx induced by this branch of &4. Define ¢z and
§¢ similarly on the Q side.

C. Realizations 7@ of P% for @ € BN a, and similarly realizations x® of 9%

fora € Bna.
We shall maintain the following conditions:

1. Both the iteration trees constructed are balanced above 7. Note then that
by Lemma 3.14 both trees are sturdy;

2. Above 7 the iteration trees arise in comparison. In other words, for o > 7
the index of the a-th extender used on I/ and V is always the least v, which
represents a disagreement between the premice P, and Q,,. If there are no
disagreements we end the construction;

3. For a € BNa, U and V are both semilinear at &;

4. Any two of the realizations 7®, @ € BN a commute. Similarly on the Q
side;

5. If BN« has a maximal element, 3, then the tree U picks unique realizable
branches above 8 (wrt 7). Similarly on the Q side.

Having specified conditions 1-5, the construction itself is straightforward. We
begin the construction at stage & = 7 + 1 with the obvious iteration trees. On
the P side it is the iteration tree which extends 7 using b, and on the Q side it
is the iteration tree which extends 7 using c. The realizations 77 and ¥" are set
equal to 7 and ¥ respectively. We set BN+ 1= {n}. By [Ste93, Theorem 2.1]
—or rather [Jen97, §6, Lemma 2], as the proof for premice with Jensen’s indexing
is slightly more complicated— 4, is a Woodin cardinal of P, N Q., where 4, is
the supremum of indices of extenders used in 7. (For convenience let us refer to
these indices as ¢, £ < ).) It then follows from condition 2 that for any & > 7,

Pallva = Qallva = “6, is a Woodin cardinal.”

By Lemma 3.24 it follows that condition 3 holds for & > 7, with a@ = 7.
Suppose now « has been reached, where « is a successor ordinal. We let
Ya-1 be the least index of a disagreement between P,_; and Q,_1 if there is a
disagreement. On each side we either pad —if v,—1 does not index an extender—
or extend the iteration tree using the extender indexed at v,._;. We extend both
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iteration trees in a balanced fashion. This is possible by Remark 3.15. We then
set BNa+ 1= BNa. This completes the construction in the successor case.
Suppose next a has been reached, where « is a limit ordinal.

CraiM 3.26: There exists a cofinal branch b, through U} « and a realization 7
of the easy phalanx induced by this branch, so that 7 commutes with 7* for
every @ € BN a. Similarly on the Q side.

Proof: If BN a is bounded in o use Lemma 3.18 (or Lemma 3.19 if o = wy)
together with condition 5. If BN « is cofinal in « use Lemma 3.20 (or Lemma
3.23 if & = wy) together with conditions 3 and 4. ]

Of the branches given by Claim 3.26, pick cofinal branches b, and ¢, in such
a way that either
- There is no disagreement between the direct limits P, and Q._; or if this
is not possible,
- pick by, cq 80 as to minimize the index ~, of the first disagreement between
Pe,, and Q..
Extend the iteration tree U a by letting P, be the direct limit along the branch
ba. Work similarly on the © side.

If BN« is cofinal in o we set by necessity BNa+1 = BNalJ{a}. Our choice
of b, together with the fact that all future extensions of U [« are semilinear at
points in B Na easily imply that these future extensions are semilinear at « too.
The same goes for the @ side. This secures condition 3 for future extensions, and
the construction is then completed for this stage.

Let us then assume finally that BNa is bounded in « and thus has a maximal
element 3. If the branches b, and ¢, given by Claim 3.26 are the unigque super-
realizable (wrt 7 and ¥”) cofinal branches of U] a and V| a, then we set BN
a+ 1= BnNea. Condition 5 is maintained and the construction is completed for
this stage. If uniqueness fails on either side, we must set BNna+1 = BNna|J{a}
in order to maintain 5. The fact that condition 3 continues to hold for future &
(with @ = o) follows from Lemma 3.24 together with the following Claim:

CLAIM 3.27: Assume that in stage o uniqueness fails on either side of the
comparison (or on both). Let 6, = sup{ve | £ < a}. Then for all& > o,

Pallva = Qallva E “0a is a Woodin cardinal.”

Proof: Assume for definitiveness that uniqueness fails on the P side, so that
there is a cofinal realizable branch b’ of [ « which is distinct from b,,. Note that
both Py, and Py disagree with Q, for otherwise the comparison would have
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ended at stage o. By [Jen 97, §6, Lemma 2] the fact that b, and b’ are distinct
implies that d, is a Woodin cardinal in Py, N Py

Consider first the possibility that d, fails to be a Woodin cardinal in P, =
Py, . It follows that Py, and Py must disagree. Let v be the index of the first
disagreement between these premice. Then either

i. Py, and Q, disagree before v+ 1; or else

ii. Py and Q, disagree before v + 1.
(For otherwise Ps_|ly + 1 and Py |}y + 1 would both be initial segments of Q,,
and would hence agree.) Our choice of b, minimized the first disagreement ~y,.
From i,ii it therefore follows that

Yo < -

But then §, is Woodin in P,||v, and so the conclusion of Claim 3.27 holds for
& = a. With regard to greater &: 7, is a cardinal of Pz and Ps||va = PallVa-
Thus &, is a Woodin cardinal in P and so certainly a Woodin cardinal in Pg||va-

This completes the proof of Claim 3.27 under the assumption that d, is not
a Woodin cardinal of P,. Considering the other possibility: If d, is a Woodin
cardinal of P, then it is a Woodin cardinal of P for all & > «, and so certainly
a Woodin cardinal of Ps||va- 1

We continue the construction until reaching a stage where there are no further
disagreements, or until we reach o = w; + 1, which ever comes first. As always
in the case of comparisons we have the following:

Fact 3.28: Two extenders E and F are said to be compatible if they have the
same critical point k; the same domain; and for each A C & in their domain,
E(A)N A= F(A)N X where A = min{lh(E),h(F)}.

Let E, F be two extenders which were used in the construction, on Y and on
V respectively. If E and F are compatible then they are in fact equal, and were
used at the same stage on the trees, before ). In other words the extender E = F
was used on T.

Proof (sketch): Say E = EC“ and F = EZ . If { = £ then compatibility implies
E = F and the nature of our construction is such that this can only happen
before 1. So suppose ¢ # £; say ¢ < £ for definitiveness. Note 7. is a cardinal
of NY, Ih(E) < 1h(F), and (by compatibility) F|Ih(E) = E. One can show
E = F|Ih(E) € Ngv . (This may require use of the initial segment condition,
2.4(5).) But E¢ € MY implies ¢ is not a cardinal of N Y, a contradiction. |
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Fact 3.28 is an inner model staple. As always it can be used to argue that the
comparison terminates at a countable . We must however take some care, since
our iteration trees are balanced rather than non-overlapping.

CrLAIM 3.29: The above construction must terminate at a countable stage c.

Proof: Assume otherwise. Let b, be the final branches (of length w;) on the
trees U and V. Note that both b and ¢ are closed unbounded subsets of wy. Since
both @ and P consist of countable premice, there must exist a club C C wy — 5 of
limit ordinals so that C C b; C C & and &, () =4, (§) = w: for each £ € C.
For each ¢ € C let o be the largest a such that o + 1 € b and crit(E¥) < €.
(Note that there can be only finitely many such a-s, since the direct limit along
bis wellfounded.) Define B¢ similarly on the Q side. By thinning C if needed,
we may assume that for £ € C in fact crit(Egg) = ¢ and crit(EgE) = £. Since
U is balanced, crit(,41,,) cannot lie in [crit(EY, ), In(EY.)). The maximality
in our choice of a; implies further that crit:(z‘lgg +14w,) is strictly greater than
crit(Egg) = €. Combining these two statements we conclude that

(%) crit(i¥ ) > Ih(EY,)

a5+1,w1

and similarly on the Q side. The rest of the proof follows standard lines: By Fact
3.28 there must exist X C £ so that

EY (Xe) N e # Ep (Xe) N A
for each ¢ € C, where A¢ = min{lh(EY,), Ih(E},)}. Using (x) one sees that
i (Xe) # i) #(Xe)

for any £ > max{ag, B¢} in C. But now a standard pressing down argument
produces a contradiction. |

Readers familiar with the argument used in the case of non-overlapping trees
will note that the only difference between this standard argument and our proof
of Claim 3.29 is in the choice of a¢ +1 and ¢ 4 1. In the case of non-overlapping
trees these ordinals are the successors of £ in b and ¢ respectively, and this is
enough to secure (). In our case securing (*) requires going a bit further, to the
last points where an extender with critical point £ (or smaller) is used on b,é.

Let # < w; be the end stage of the comparison, so that there are no disagree-
ments between Py and Qg. What follows is a short discussion with one recurring
motif. We shall argue under various circumstances that embeddings induced by
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the two iteration trees are equal. From this we shall conclude that the extenders
giving rise to these embeddings are compatible, and thus derive a contradiction
using Fact 3.28. We shall consider various cases, but in all cases we end with a
contradiction. Thus we shall finally obtain a contradiction to our initial assump-
tion that there are distinct realizable branches through 7, completing the proof
of Theorem 3.2. Before starting with this discussion, let us make the recurrent
motif precise:

Craim 3.30: Let a be a point on [0, 0]y which is greater than or equal to the last
truncation point, if there are truncation points on this branch. Recall that Py
is an initial segment of P, (it Is strict iff & is a truncation point) and U defines
iLal,G: P, —> Py. Pick B on [0,6)y similarly.

Assume that Py = Qg, that P, = Q;, and that ilg’g = i]ﬁj,e- Then there exists
an ordinal £ < n such that

e £ is greater than both o and j;
e & belongs to both [0,8)y and [0, 6]y; and

¢ isu,li: Ne¢ — Py and ig,gi Ne — Qg are equal.

Proof: Let N denote the common value of Py, Qq, let j denote the embedding

ig,e = i}a},e’ and let k be the critical point of j.

Let & + 1 be the last point on [a, 8]y for which crit(E¥) = & (there can be
at most finitely many such points). The fact that I is balanced above 7 and
non-overlapping up to 7 implies that crit(i%,, ) > Ih(E¥). Similarly on the
Q side let 8+ 1 be the last point on [3,6]y so that crit(Eg) = K, and obtain
crit(z‘g 1g) 2 lh(Eg). Thus both %, , 5 and i};”+ ¢ have critical points at least
A where A = min{lh(Eg),lh(Eg)}. Since i% 5 = i) 4 we now conclude that EY

and Eg are compatible.

Applying Fact 3.28 we are left with the knowledge that @ = B < n and EY =
Eg In particular both extenders have length equal to A. Let £ be the common
value of & + 1 and 8 + 1, and let F be the common value of E¥ and E); Then
¢ < n belongs to both (a, 0y and (B, 0]y as required. Note that in particular we
have o = 8 and % , = if ., as both embeddings are equal to 57_ .. To complete
the proof of the Claim it remains to verify that ¢, = i} 5. To that end note that
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we have on the two sides the following diagrams:

5 N N
ia,e iv,
R
iz:,é i: 13
Py —> Ne Q,E 55 N

Since the critical points of the vertical maps on both sides are greater than A =
Ih(F) it follows immediately that the vertical maps are the factor embeddings. To
be more precise (say on the P side), any element of NV has the form (igé( f )) (£)
where ji is some tuple of ordinals below A. (We are using here the fact that U
is normal; all extenders on [«, &)y have length at most A.) 2'?,9 must send this

element to (igﬁ( f )) (). The same reasoning applies on the @ side. Thus in both
diagrams the “vertical” maps can be recovered from the diagonal and horizontal
maps. Since the diagonal and the horizontal maps are the same on both sides, we
conclude that the vertical maps are the same on both sides, as required. |

COROLLARY 3.31: Let @ be a point on [0, 6]y, which is greater than or equal to
the last truncation point (if there are truncations on this branch). Pick B on
[0, 6]y similarly.

Assume that Py = Qg. Then it cannot be the case that P; = Qg and
4o =13,
Proof: Assume otherwise. We can thus apply Claim 3.30 with ¢ = & and
B = B. Let & < 7 be the ordinal produced by Claim 3.30. Working inductively
we construct an increasing sequence of ordinals £, < 7 so that (a) £ belongs
to both [0,6) and [0,6]y; and (b) # , = if ;. We have already defined .
To define £,,1, apply Claim 3.30 with a = 8 = £,. In the case of limit ¢ let
& = sup{é; | ¢ < ¢}. That &, belongs to [0,6]y and [0,6]y follows from the
induction and the fact that both these branches are closed sets of ordinals.

Continue this construction until the sequence (£,) is cofinal in 7. Let d be
the cofinal branch through 7 which contains the ordinals of this sequence. Then
d C [0, 0]y and also d C [0, 6]y. Since both branches are closed we have 7 € [0, 6]y
and also 7 € [0,6]y. From this we conclude that both [0, 7]y and [0, 7]y are equal
to d. But this contradicts our initial assumption that [0, 7]y = b and [0,7]y = ¢
are distinct branches through 7. §

Equipped with Corollary 3.31 let us proceed with the discussion. Our aim is
to obtain a final contradiction.
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CrLam 3.32: At least one of the following two possibilities holds:
1. There are no truncations on the branch of U leading to Py; or
2. There are no truncations on the branch of V leading to Q.

Proof: Assume for contradiction that there are truncations on both sides. Then
by necessity both Py and Qp are not sound. In particular neither one can be a
strict initial segment of the other and so Py = Qy. Let us use N to denote their
common value. Let & be the last truncation point on [0, 8]y and let 3 be the last
truncation point on [0,6]y,. Since U is sturdy we may appeal to Lemma 2.25(b).
Thus P5; = €(N) and izc_fﬁ: Pz — N is the anti-core embedding. Similarly on the
Q side, QE = ¢(N) and ig,ez QE — N is the anti-core embedding. In particular
y

ig’g is equal to i 5.0 but this is a contradiction by Corollary 3.31. ]

CrLAIM 3.33: There are in fact no truncations on either of [0, 0]y, [0, 6]y.

Proof: By Claim 3.32 there are no truncations on at least one of the two sides.
Assume for definitiveness that there are no truncations on [0, 8]y, so that ilf)(,e
embeds N into Py.

Assume for contradiction that there are truncations on [0,6]y. Then Qp is
not sound and so by necessity Py is an initial segment of Qg. Our construction
of V was such that [0, 6]y is super-realizable (wrt the original realization v, 7 of
N}. Since there are truncations on this branch, super-realizability implies that
Qg embeds weakly into M for some 7 which is strictly smaller than v. Let
X: Qo — My witness this. Let P = %{Ps). Then P is an initial segment of M,
and %[ Pg: Py — P is weak. Let b = Resy[P], and let & = o5[P] o (X Ps) o il({a.

Then #: N — M; is weak, and # < # < v. But this contradicts our initial
assumption in Theorem 3.2 regarding the minimality of v. 1

Given Claim 3.33, the fact that [0,6]y, and [0,6]y are super-realizable says
simply that there exist weak embeddings 7: Py = M, and x: Q¢ — M, so that
T =7 oif, (on the P side) and 7 = ¥ 04, (on the Q side).

CLAIM 3.34: Py = Qy.

Proof: Assume for contradiction that this is not the case — say Py is a strict
initial segment of Qg. Let P = X(Ps), so that P is a strict initial segment of
M,, and there is a weak embedding | Pg: Py — P. Let v = Res,[P]. AsPisa
strict initial segment of M,, we have & < v strictly.

Let # = 0, [P]o (X] Ps) oiﬁ"{,. Then #: N' = My is weak and 7 < v. As before
this contradicts the minimality of v, assumed in Theorem 3.2. |
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Cram 3.35: The embeddings iﬁ‘ﬂ and i(‘))ﬂ are equal.

Proof: Assume for contradiction that they are not. Let z € N be least, with
respect to €, such that if,{g(x) # i(‘)’,g (z). Assume for definitiveness that il(fﬂ (z) <g
iy o(z), where <y, is the order of constructibility (in Py = Q). Let 7 = X 0 4,.
Then

#(x) =x (i§ o(2))
<ux (igg(z))
=n(z).

Similarly for y € A which is enumerated before z in & we compute

#(y) =x (166 (v))
=x (i54(¥))
=n(y).

Thus 7: N = M, is a weak embedding which is to the left of 7. But this
contradicts our assumption in Theorem 3.2 that = is left most. |

Finally we reached the conclusion that Py = Qg, there are no truncations on
[0,6]y and [0,0]y, and z'l(f,g = i(‘{ o- But this contradicts Corollary 3.31, applied
with @ = § = 0. This final contradiction completes the proof of Theorem 3.2.
B(Theorem 3.2)

The reader familiar with [NS99] may note a certain general pattern in our
argument. Roughly speaking it follows the lines “Comparison plus Dodd-Jensen
= Uniqueness.” This implication was noticed by the third author, and it seems
to hold in many general settings.

Before closing let us take note of our use of the assumption that 7 is normal,
maximal, and non-overlapping in Theorem 3.2. We have certainly throughout
the argument used the fact that U,V are sturdy. (This was especially important
for Claim 3.32.) The sturdiness of & and V traces back to Lemma 3.14 with
Rin =T, and to Lemma 3.9. The argument there requires some assumptions
on 7. It is not enough to assume that 7 is sturdy (the problem is in Steps 7
and 9 of Claim 3.11) but it is enough to assume that 7 is suitable. The only
other occurrence of 7 is in the proof of Claim 3.30. After defining & + 1 (and
similarly 8 + 1) in this proof we argue that % +1,0 has critical point equal to or
greater than A. Our definition of & + 1 makes this argument possible, but only
with some assumption limiting the way extenders on U may overlap EY. For
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extenders indexed above 7 the fact that I/ is balanced above 7 suffices. However

some additional assumption is needed to cover extenders indexed before 7 (i.e.
extenders on 7). Again it is enough to assume that 7 is suitable. Thus Theorem
3.2 continues to hold if “normal, maximal, and non-overlapping” is weakened to

“suitable.’

" Similarly Corollary 3.3 continues to hold if the restriction of Footnote

16 is weakened to “suitable.”

[Jen72)

[Jen97]

[Jen98a]
[Jen98b]

[Kan97)
[MarSt94]

[MitSt94]
[NS99]
[SS96]
(57]
[Ste93]
[Ste96]

[Zem)]
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